Suppr超能文献

农业废弃物热解燃烧联产生物炭和生物能源系统的排放特性。

Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes.

机构信息

School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.

Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.

出版信息

Waste Manag. 2018 Jul;77:59-66. doi: 10.1016/j.wasman.2018.05.004. Epub 2018 May 12.

Abstract

The co-production of biochar and bioenergy using pyrolysis-combustion processes can potentially minimize the emission problems associated with conventional methods of agricultural by-product disposal. This approach also provides significant added-value potential through biochar application to soil. Despite these advantages, variations in biomass composition, including sulfur, nitrogen, ash, and volatile matter (VM) content, may significantly influence both the biochar quality and the emissions of harmful particulate matter (PM) and gaseous pollutants (SO, HS, NO, NO). Using a laboratory-scale continuous pyrolysis-combustion facility, the influence of biomass composition (rice husk and grape pruning) and volatile production (pyrolysis) temperature (400-800 °C) on the biochar properties and emissions during combustion of the raw pyrolysis volatiles were evaluated. Utilization of grape pruning resulted in higher energy-based yields of PM than the rice husk, the majority of which consisted of the PM fraction due to the elevated pyrogas content of the volatiles. The PM emissions were found to be independent of the feedstock ash content due to its retainment in the biochar. Greater volatilization of biomass sulfur and nitrogen during pyrolysis at higher temperatures resulted in higher yields of sulfurous and nitrogenous gaseous pollutants. The energy-based yields of NO and NO were found to increase by 16% and 50% for rice husk and 21% and 189% for grape pruning respectively between 400 and 800 °C. The same trend was also observed for the emissions of HS and SO for both feedstocks.

摘要

使用热解-燃烧工艺生产生物炭和生物能源可以最大限度地减少与传统农业副产物处理方法相关的排放问题。这种方法还通过将生物炭应用于土壤提供了显著的附加价值潜力。尽管有这些优势,但生物质组成的变化,包括硫、氮、灰分和挥发性物质(VM)含量,可能会显著影响生物炭的质量和有害颗粒物(PM)和气态污染物(SO、HS、NO、NO)的排放。本研究使用实验室规模的连续热解-燃烧设备,评估了生物质组成(稻壳和葡萄修剪)和挥发性物质产生(热解)温度(400-800°C)对原始热解挥发物燃烧过程中生物炭特性和排放的影响。与稻壳相比,葡萄修剪的利用导致基于能量的 PM 产量更高,这主要是由于挥发物中富含热煤气,导致大部分 PM 都是 PM 组分。由于灰分保留在生物炭中,PM 排放与原料灰分含量无关。在较高温度下进行热解时,生物质中的硫和氮更易挥发,导致含硫和含氮气态污染物的产量更高。发现基于能量的稻壳中 NO 和 NO 的产量分别增加了 16%和 50%,而葡萄修剪的产量则分别增加了 21%和 189%,温度范围在 400-800°C。对于这两种原料的 HS 和 SO 的排放也观察到了相同的趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验