Suppr超能文献

生物炭系统的生命周期评估:估算能源、经济和气候变化潜力。

Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential.

机构信息

College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA.

出版信息

Environ Sci Technol. 2010 Jan 15;44(2):827-33. doi: 10.1021/es902266r.

Abstract

Biomass pyrolysis with biochar returned to soil is a possible strategy for climate change mitigation and reducing fossil fuel consumption. Pyrolysis with biochar applied to soils results in four coproducts: long-term carbon (C) sequestration from stable C in the biochar, renewable energy generation, biochar as a soil amendment, and biomass waste management. Life cycle assessment was used to estimate the energy and climate change impacts and the economics of biochar systems. The feedstocks analyzed represent agricultural residues (corn stover), yard waste, and switchgrass energy crops. The net energy of the system is greatest with switchgrass (4899 MJ t(-1) dry feedstock). The net greenhouse gas (GHG) emissions for both stover and yard waste are negative, at -864 and -885 kg CO(2) equivalent (CO(2)e) emissions reductions per tonne dry feedstock, respectively. Of these total reductions, 62-66% are realized from C sequestration in the biochar. The switchgrass biochar-pyrolysis system can be a net GHG emitter (+36 kg CO(2)e t(-1) dry feedstock), depending on the accounting method for indirect land-use change impacts. The economic viability of the pyrolysis-biochar system is largely dependent on the costs of feedstock production, pyrolysis, and the value of C offsets. Biomass sources that have a need for waste management such as yard waste have the highest potential for economic profitability (+$69 t(-1) dry feedstock when CO(2)e emission reductions are valued at $80 t(-1) CO(2)e). The transportation distance for feedstock creates a significant hurdle to the economic profitability of biochar-pyrolysis systems. Biochar may at present only deliver climate change mitigation benefits and be financially viable as a distributed system using waste biomass.

摘要

生物炭回田的生物质热解是减缓气候变化和减少化石燃料消耗的一种可能策略。将生物炭应用于土壤的热解会产生四种副产物:生物炭中稳定碳的长期碳(C)固存、可再生能源的产生、生物炭作为土壤改良剂以及生物质废物管理。生命周期评估用于估算生物炭系统的能源和气候变化影响以及经济性。分析的原料代表农业残留物(玉米秸秆)、庭院废物和柳枝稷能源作物。净能源系统以柳枝稷最高(4899 MJ t(-1) 干原料)。秸秆和庭院废物的净温室气体(GHG)排放量均为负值,分别为每吨干原料减少 864 和 885 千克二氧化碳当量(CO(2)e)排放。在这些总减排量中,有 62-66%来自生物炭中 C 的固存。取决于对间接土地利用变化影响的核算方法,柳枝稷生物炭热解系统可能成为 GHG 的净排放源(+36 kg CO(2)e t(-1) 干原料)。热解-生物炭系统的经济可行性在很大程度上取决于原料生产、热解和 C 补偿的成本。像庭院废物这样需要废物管理的生物质来源具有最高的经济盈利潜力(当 CO(2)e 减排量价值为 80 美元/吨 CO(2)e 时,+69 美元/吨干原料)。原料的运输距离对生物炭热解系统的经济盈利性构成了重大障碍。生物炭目前可能仅能提供气候变化缓解效益,并且作为使用废物生物质的分布式系统在经济上是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验