Suppr超能文献

加速磁共振参数映射的局部子空间约束联合。

Accelerated MR parameter mapping with a union of local subspaces constraint.

机构信息

Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona.

Department of Medical Imaging, University of Arizona, Tucson, Arizona.

出版信息

Magn Reson Med. 2018 Dec;80(6):2744-2758. doi: 10.1002/mrm.27344. Epub 2018 Jul 15.

Abstract

PURPOSE

A new reconstruction method for multi-contrast imaging and parameter mapping based on a union of local subspaces constraint is presented.

THEORY

Subspace constrained reconstructions use a predetermined subspace to explicitly constrain the relaxation signals. The choice of subspace size impacts the approximation error vs noise-amplification tradeoff associated with these methods. A different approach is used in the model consistency constraint (MOCCO) framework to leverage the subspace model to enforce a softer penalty. Our proposed method, MOCCO-LS, augments the MOCCO model with a union of local subspaces (LS) approach. The union of local subspaces model is coupled with spatial support constraints and incorporated into the MOCCO framework to regularize the contrast signals in the scene.

METHODS

The performance of the MOCCO-LS method was evaluated in vivo on T and T mapping of the human brain and with Monte-Carlo simulations and compared against MOCCO and the explicit subspace constrained models.

RESULTS

The results demonstrate a clear improvement in the multi-contrast images and parameter maps. We sweep across the model order space to compare the different reconstructions and demonstrate that the reconstructions have different preferential operating points. Experiments on T mapping show that the proposed method yields substantial improvements in performance even when operating at very high acceleration rates.

CONCLUSIONS

The use of a union of local subspace constraints coupled with a sparsity promoting penalty leads to improved reconstruction quality of multi-contrast images and parameter maps.

摘要

目的

提出了一种基于局部子空间约束联合的多对比度成像和参数映射的新重建方法。

理论

子空间约束重建使用预定的子空间来明确约束弛豫信号。子空间大小的选择会影响这些方法的近似误差与噪声放大之间的权衡。在模型一致性约束(MOCCO)框架中采用了一种不同的方法,利用子空间模型来施加更软的惩罚。我们提出的方法 MOCCO-LS 通过使用局部子空间(LS)的联合来增强 MOCCO 模型。局部子空间模型与空间支持约束相结合,并纳入 MOCCO 框架中,以正则化场景中的对比信号。

方法

在人体大脑的 T 和 T 映射的体内评估了 MOCCO-LS 方法的性能,并通过蒙特卡罗模拟进行了比较,与 MOCCO 和显式子空间约束模型进行了比较。

结果

结果表明,多对比度图像和参数图的质量得到了明显的改善。我们在模型阶空间中进行了扫描,以比较不同的重建结果,并证明了重建具有不同的偏好工作点。T 映射实验表明,即使在非常高的加速率下,该方法也能显著提高性能。

结论

使用局部子空间约束的联合和稀疏促进惩罚会导致多对比度图像和参数图的重建质量得到改善。

相似文献

8
Constrained alternating minimization for parameter mapping (CAMP).约束交替最小化参数映射(CAMP)。
Magn Reson Imaging. 2024 Jul;110:176-183. doi: 10.1016/j.mri.2024.04.029. Epub 2024 Apr 23.
10
Subspace-constrained approaches to low-rank fMRI acceleration.基于子空间约束的低秩 fMRI 加速方法。
Neuroimage. 2021 Sep;238:118235. doi: 10.1016/j.neuroimage.2021.118235. Epub 2021 Jun 3.

引用本文的文献

本文引用的文献

9
Accelerating parameter mapping with a locally low rank constraint.基于局部低秩约束的加速参数映射
Magn Reson Med. 2015 Feb;73(2):655-61. doi: 10.1002/mrm.25161. Epub 2014 Feb 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验