Wellcome Centre for Integrative Neuroscience, FMRIB Centre, University of Oxford, Oxford, United Kingdom.
Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, United Kingdom.
Neuroimage. 2021 Sep;238:118235. doi: 10.1016/j.neuroimage.2021.118235. Epub 2021 Jun 3.
Acceleration methods in fMRI aim to reconstruct high fidelity images from under-sampled k-space, allowing fMRI datasets to achieve higher temporal resolution, reduced physiological noise aliasing, and increased statistical degrees of freedom. While low levels of acceleration are typically part of standard fMRI protocols through parallel imaging, there exists the potential for approaches that allow much greater acceleration. One such existing approach is k-t FASTER, which exploits the inherent low-rank nature of fMRI. In this paper, we present a reformulated version of k-t FASTER which includes additional L2 constraints within a low-rank framework. We evaluated the effect of three different constraints against existing low-rank approaches to fMRI reconstruction: Tikhonov constraints, low-resolution priors, and temporal subspace smoothness. The different approaches are separately tested for robustness to under-sampling and thermal noise levels, in both retrospectively and prospectively-undersampled finger-tapping task fMRI data. Reconstruction quality is evaluated by accurate reconstruction of low-rank subspaces and activation maps. The use of L2 constraints was found to achieve consistently improved results, producing high fidelity reconstructions of statistical parameter maps at higher acceleration factors and lower SNR values than existing methods, but at a cost of longer computation time. In particular, the Tikhonov constraint proved very robust across all tested datasets, and the temporal subspace smoothness constraint provided the best reconstruction scores in the prospectively-undersampled dataset. These results demonstrate that regularized low-rank reconstruction of fMRI data can recover functional information at high acceleration factors without the use of any model-based spatial constraints.
磁共振功能成像中的加速方法旨在从欠采样的 k 空间重建高保真图像,使 fMRI 数据集能够实现更高的时间分辨率、降低生理噪声伪影,并增加统计自由度。虽然在标准 fMRI 协议中,低水平的加速通常是并行成像的一部分,但存在允许更大加速的方法的潜力。一种现有的方法是 k-t FASTER,它利用 fMRI 的固有低秩性质。在本文中,我们提出了 k-t FASTER 的一种重新表述版本,该版本在低秩框架内包含了额外的 L2 约束。我们评估了三种不同的约束与现有的 fMRI 重建低秩方法的效果:Tikhonov 约束、低分辨率先验和时间子空间平滑度。在回顾性和前瞻性欠采样指击任务 fMRI 数据中,分别针对三种不同的方法对欠采样和热噪声水平的稳健性进行了测试。通过准确重建低秩子空间和激活图来评估重建质量。使用 L2 约束可以实现一致的改进结果,与现有方法相比,在更高的加速因子和更低的 SNR 值下,可以生成具有更高保真度的统计参数图重建,但计算时间更长。特别是,Tikhonov 约束在所有测试数据集上都非常稳健,时间子空间平滑约束在前瞻性欠采样数据集中提供了最佳的重建得分。这些结果表明,正则化低秩 fMRI 数据重建可以在不使用任何基于模型的空间约束的情况下,在高加速因子下恢复功能信息。