a Institute of Cytology of the Russian Academy of Sciences , St. Petersburg , Russia.
b Moscow Institute of Physics and Technology (State University) , Moscow Region , Dolgoprudny , Russia.
Cell Cycle. 2018;17(14):1745-1756. doi: 10.1080/15384101.2018.1496742. Epub 2018 Aug 1.
The proteasome is the key player in targeted degradation of cellular proteins and serves as a therapeutic target for treating several blood malignancies. Although in general, degradation of proteins via the proteasome requires their ubiquitination, a subset of proteins can be degraded independently of their ubiquitination by direct interaction with subunits of the 20S proteasome core. Thus, investigation of the proteasome-associated proteins may help identify novel targets of proteasome degradation and provide important insights into the mechanisms of malignant cell proteostasis. Here, using biochemical purification of proteasomes from multiple myeloma (MM) cells followed by mass-spectrometry we have uncovered 77 proteins in total that specifically interacted with the 20S proteasome via its PSMA3 subunit. Our GST pull-down assays followed by western blots validated the interactions identified by mass-spectrometry. Eleven proteins were confirmed to bind PSMA3 only upon apoptotic conditions induced by a combined treatment with the proteasome inhibitor, bortezomib, and genotoxic drug, doxorubicin. Nine of these eleven proteins contained bioinformatically predicted intrinsically disordered regions thus making them susceptible to ubiquitin-independent degradation. Importantly, among those proteins five interacted with the ubiquitin binding affinity matrix suggesting that these proteins may also be ubiquitinylated and hence degraded via the ubiquitin-dependent pathway. Collectively, these PSMA3-interacting proteins represent novel potential substrates for 20S proteasomes upon apoptosis. Furthermore, these data may shed light on the molecular mechanisms of cellular response to chemotherapy.
BD: bortezomib/doxorubicin treatment; CDK: cyclin-dependent kinases; CHCA: α-cyanohydroxycinnamic acid; IDP: intrinsically disordered proteins; IDR: intrinsically disordered regions; IPG: immobilized pI gradient; MALDI TOF/TOF: matrix-assisted laser desorption/ionization time-of-flight tandem mass-spectrometry; MM: multiple myeloma; ODC: ornithine decarboxylase; PI: proteasomal inhibitors; PSMA: alpha-type 20S proteasome subunits; PTMs: post-translational modifications; SDS-PAGE: sodium dodecylsulphate polyacrylamide gel electrophoresis; UIP: ubiquitin-independent proteasomal proteolysis.
蛋白酶体是靶向降解细胞蛋白的关键因子,也是治疗多种血液恶性肿瘤的治疗靶点。尽管一般来说,通过蛋白酶体降解蛋白质需要它们的泛素化,但一部分蛋白质可以通过与 20S 蛋白酶体核心的亚基直接相互作用而独立于泛素化进行降解。因此,研究蛋白酶体相关蛋白可以帮助鉴定新的蛋白酶体降解靶标,并为恶性细胞蛋白稳定机制提供重要见解。在这里,我们使用多发性骨髓瘤(MM)细胞蛋白酶体的生化纯化,然后进行质谱分析,总共发现了 77 种总蛋白,这些蛋白通过其 PSMA3 亚基特异性地与 20S 蛋白酶体相互作用。我们的 GST 下拉测定和随后的免疫印迹验证了质谱鉴定的相互作用。在硼替佐米和致瘤药物阿霉素联合治疗诱导的凋亡条件下,有 11 种蛋白质被证实仅与 PSMA3 结合。这 11 种蛋白质中的 9 种含有生物信息学预测的内在无序区域,因此易发生非依赖性泛素化降解。重要的是,其中 5 种蛋白质与泛素结合亲和力基质相互作用,表明这些蛋白质也可能被泛素化,因此通过泛素依赖性途径降解。总之,这些与 PSMA3 相互作用的蛋白质代表了凋亡时 20S 蛋白酶体的新潜在底物。此外,这些数据可能阐明了细胞对化疗的分子机制。
BD:硼替佐米/阿霉素治疗;CDK:细胞周期蛋白依赖性激酶;CHCA:α-氰基-4-羟基肉桂酸;IDP:内在无序蛋白;IDR:内在无序区域;IPG:固定 pH 梯度;MALDI-TOF/TOF:基质辅助激光解吸/电离飞行时间串联质谱;MM:多发性骨髓瘤;ODC:鸟氨酸脱羧酶;PI:蛋白酶体抑制剂;PSMA:α-20S 蛋白酶体亚基;PTMs:翻译后修饰;SDS-PAGE:十二烷基硫酸钠聚丙烯酰胺凝胶电泳;UIP:非依赖性泛素化蛋白酶体蛋白水解。