University of Illinois at Chicago, USA; University of Michigan, USA.
University of Illinois at Chicago, USA; University of Michigan, USA.
Prog Neuropsychopharmacol Biol Psychiatry. 2019 Apr 20;91:38-48. doi: 10.1016/j.pnpbp.2018.07.001. Epub 2018 Jul 17.
A large number of studies have attempted to use neuroimaging tools to aid in treatment prediction models for major depressive disorder (MDD). Most such studies have reported on only one dimension of function and prediction at a time. In this study, we used three different tasks across domains of function (emotion processing, reward anticipation, and cognitive control, plus resting state connectivity completed prior to start of medication to predict treatment response in 13-36 adults with MDD. For each experiment, adults with MDD were prescribed only label duloxetine (all experiments), whereas another subset were prescribed escitalopram. We used a KeyNet (both Task derived masks and Key intrinsic Network derived masks) approach to targeting brain systems in a specific match to tasks. The most robust predictors were (Dichter et al., 2010) positive response to anger and (Gong et al., 2011) negative response to fear within relevant anger and fear TaskNets and Salience and Emotion KeyNet (Langenecker et al., 2018) cognitive control (correct rejections) within Inhibition TaskNet (negative) and Cognitive Control KeyNet (positive). Resting state analyses were most robust for Cognitive control Network (positive) and Salience and Emotion Network (negative). Results differed by whether an -fwhm or -acf (more conservative) adjustment for multiple comparisons was used. Together, these results implicate the importance of future studies with larger sample sizes, multidimensional predictive models, and the importance of using empirically derived masks for search areas.
大量研究试图使用神经影像学工具来辅助治疗预测模型在重度抑郁症(MDD)。大多数这样的研究只报告了一次功能和预测的一个维度。在这项研究中,我们使用了三种不同的任务,涵盖了功能领域(情绪处理、奖励预期和认知控制,以及药物治疗开始前完成的静息状态连接,以预测 13-36 名 MDD 成年人的治疗反应。对于每个实验,MDD 成年人只被开度洛西汀(所有实验),而另一部分则被开舍曲林。我们使用 KeyNet(任务衍生掩模和关键内在网络衍生掩模)方法来针对大脑系统,以特定的任务匹配。最强大的预测因子是(Dichter 等人,2010 年)对愤怒的积极反应和(Gong 等人,2011 年)对相关愤怒和恐惧任务网络中的恐惧的消极反应以及显着性和情绪 KeyNet(Langenecker 等人,2018 年)认知控制(正确拒绝)在抑制任务网络(消极)和认知控制 KeyNet(积极)中。静息状态分析对认知控制网络(积极)和显着性和情绪网络(消极)最为稳健。结果因是否使用 -fwhm 或 -acf(更保守)调整多次比较而有所不同。总之,这些结果表明,未来的研究需要更大的样本量、多维预测模型,以及使用经验衍生掩模进行搜索区域的重要性。