Suppr超能文献

期望过高:对作为抑郁的原因和预测指标的奖励加工研究的批判性评价和建议。

Great Expectations: A Critical Review of and Suggestions for the Study of Reward Processing as a Cause and Predictor of Depression.

机构信息

Section on Clinical and Computational Psychiatry (CompΨ), National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.

Social and Behavioral Science Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.

出版信息

Biol Psychiatry. 2021 Jan 15;89(2):134-143. doi: 10.1016/j.biopsych.2020.06.012. Epub 2020 Jun 17.

Abstract

Both human and animal studies support the relationship between depression and reward processing abnormalities, giving rise to the expectation that neural signals of these processes may serve as biomarkers or mechanistic treatment targets. Given the great promise of this research line, we scrutinized those findings and the theoretical claims that underlie them. To achieve this, we applied the framework provided by classical work on causality as well as contemporary approaches to prediction. We identified a number of conceptual, practical, and analytical challenges to this line of research and used a preregistered meta-analysis to quantify the longitudinal associations between reward processing abnormalities and depression. We also investigated the impact of measurement error on reported data. We found that reward processing abnormalities do not reach levels that would be useful for clinical prediction, yet the available evidence does not preclude a possible causal role in depression.

摘要

人类和动物研究都支持抑郁和奖励处理异常之间的关系,这使得人们期望这些过程的神经信号可以作为生物标志物或机制治疗靶点。考虑到这一研究领域的巨大前景,我们仔细研究了这些发现及其背后的理论依据。为了实现这一目标,我们应用了因果关系的经典工作以及当代预测方法提供的框架。我们发现该研究领域存在一些概念上、实践上和分析上的挑战,并使用预先注册的荟萃分析来量化奖励处理异常与抑郁之间的纵向关联。我们还研究了测量误差对报告数据的影响。我们发现,奖励处理异常并没有达到对临床预测有用的水平,但现有证据并不排除其在抑郁中的可能因果作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcb/10726343/25b237aecae0/nihms-1604864-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验