Department of Functional Morphology and Biomechanics , Zoological Institute, Kiel University , Am Botanischen Garten 1-9 , 24118 Kiel , Germany.
ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26752-26758. doi: 10.1021/acsami.8b06686. Epub 2018 Jul 27.
Silicone elastomers are known for having low surface free energies generally leading to poor adhesive performances. This surface characteristic can be enhanced by plasma treatments. The microstructured silicone elastomer surfaces can demonstrate superior adhesive performance that is more than 10 times higher in terms of pull-off forces, compared to their unstructured counterpart. Here, we have demonstrated that the combination of these two methods further enhances adhesive performance, especially when the surfaces are biomimetic micro/nanopatterned with, e.g., beetle-inspired mushroom-shaped adhesive microstructure (MSAMS). The plasma treatment time and pressure parameters were varied for the unstructured and MSAMS poly(vinylsiloxane) surfaces to find optimum parameters for maximum adhesion performance. Air plasma treatment induced average adhesive enhancement forces up to 30% on the unstructured surface, but the MSAMS surface demonstrated an enhancement of adhesive forces up to 91% higher than that of an untreated, microstructured control, despite the plasma-treated surface area of the structured surface being only 50% of that of the unstructured surface. High-speed video-recordings of individual microstructures in contact with a glass surface shows that the origin of the adhesion enhancement is due to the special detachment mechanism of individual microstructures that allows sustaining a wider contact area at detachment. We believe that this integration of the plasma treatment with MSAMS suggests a versatile way of functionalization that can further advance the adhesive ability of low-surface-energy polymer surfaces.
硅橡胶弹性体的表面自由能通常较低,导致其粘结性能较差。这种表面特性可以通过等离子体处理来增强。微结构化硅橡胶弹性体表面可以表现出优异的粘结性能,其剥离力比非结构化的硅橡胶弹性体高 10 倍以上。在这里,我们已经证明,这两种方法的结合可以进一步提高粘结性能,特别是当表面采用仿生微/纳米图案化时,例如,模仿甲虫的蘑菇状粘附微结构(MSAMS)。我们对非结构化和 MSAMS 聚(乙烯基硅氧烷)表面进行了等离子体处理时间和压力参数的变化,以找到最佳参数,从而获得最大的粘结性能。空气等离子体处理可使非结构化表面的平均粘结增强力提高 30%,但 MSAMS 表面的粘结增强力比未经处理的微结构化对照表面提高了 91%,尽管处理后的结构化表面的面积仅为非结构化表面的 50%。与玻璃表面接触的单个微结构的高速视频记录显示,粘结增强的原因是由于单个微结构的特殊分离机制,允许在分离时保持更大的接触面积。我们相信,这种等离子体处理与 MSAMS 的结合为功能化提供了一种通用的方法,可以进一步提高低表面能聚合物表面的粘结能力。