Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany.
Adv Mater. 2018 May;30(19):e1704696. doi: 10.1002/adma.201704696. Epub 2017 Dec 27.
The importance of the geometry of the micro-/nanosized attachment elements for adhesive characteristics of gecko-inspired microstructured surfaces has been comprehensively discussed in recent years. Due to the complex hierarchical structure of these systems, they possess a broad range of adhesion control capabilities by either passive or active adaptability of their underlying structures to the specific substrate and/or behavioral situation. Here, the influence of macroscopic geometry of backing layers hosting biomimetic microstructured surfaces is examined. The flat, convex, and concave macroscopic configurations of the bioinspired microstructured adhesive surfaces are examined on their adhesive performance under varying degrees of curvature and preloads. Microstructured surfaces demonstrated an adhesion range differing by up to a factor of 2 alone through varying backing layer configuration. The results can aid in understanding the influence of curvature geometry on hierarchically structured adhesive systems and the implementation of biomimetic structured surfaces in applications such as robots and grippers optimized for different sized objects.
近年来,人们已经全面讨论了微观/纳米尺寸附着元件的几何形状对壁虎启发的微结构化表面的粘附特性的重要性。由于这些系统的复杂层次结构,它们通过其基础结构对特定基底和/或行为情况的被动或主动适应性,具有广泛的粘附控制能力。在这里,研究了承载仿生微结构化表面的支撑层的宏观几何形状的影响。在不同程度的曲率和预加载下,研究了仿生微结构化粘附表面的平面、凸面和凹面宏观配置对其粘附性能的影响。通过改变支撑层的配置,微结构化表面的粘附范围相差可达 2 倍。研究结果有助于理解曲率几何形状对分层结构粘附系统的影响,以及在机器人和夹具等应用中实施仿生结构化表面,这些应用针对不同尺寸的物体进行了优化。