Suppr超能文献

手持单目内窥镜的实时跟踪和密集重建。

Live Tracking and Dense Reconstruction for Handheld Monocular Endoscopy.

出版信息

IEEE Trans Med Imaging. 2019 Jan;38(1):79-89. doi: 10.1109/TMI.2018.2856109. Epub 2018 Jul 13.

Abstract

Contemporary endoscopic simultaneous localization and mapping (SLAM) methods accurately compute endoscope poses; however, they only provide a sparse 3-D reconstruction that poorly describes the surgical scene. We propose a novel dense SLAM method whose qualities are: 1) monocular, requiring only RGB images of a handheld monocular endoscope; 2) fast, providing endoscope positional tracking and 3-D scene reconstruction, running in parallel threads; 3) dense, yielding an accurate dense reconstruction; 4) robust, to the severe illumination changes, poor texture and small deformations that are typical in endoscopy; and 5) self-contained, without needing any fiducials nor external tracking devices and, therefore, it can be smoothly integrated into the surgical workflow. It works as follows. First, accurate cluster frame poses are estimated using the sparse SLAM feature matches. The system segments clusters of video frames according to parallax criteria. Next, dense matches between cluster frames are computed in parallel by a variational approach that combines zero mean normalized cross correlation and a gradient Huber norm regularizer. This combination copes with challenging lighting and textures at an affordable time budget on a modern GPU. It can outperform pure stereo reconstructions, because the frames cluster can provide larger parallax from the endoscope's motion. We provide an extensive experimental validation on real sequences of the porcine abdominal cavity, both in-vivo and ex-vivo. We also show a qualitative evaluation on human liver. In addition, we show a comparison with the other dense SLAM methods showing the performance gain in terms of accuracy, density, and computation time.

摘要

当代内镜同时定位与地图构建 (SLAM) 方法可以准确地计算内窥镜的位置;然而,它们只提供稀疏的 3D 重建,无法很好地描述手术场景。我们提出了一种新的密集 SLAM 方法,其特点是:1)单目,仅需要手持单目内窥镜的 RGB 图像;2)快速,在并行线程中提供内窥镜位置跟踪和 3D 场景重建;3)密集,生成准确的密集重建;4)鲁棒,能够应对内窥镜中常见的严重光照变化、纹理差和小变形;5)自包含,不需要任何基准标记或外部跟踪设备,因此可以平滑地集成到手术工作流程中。它的工作原理如下。首先,使用稀疏 SLAM 特征匹配来估计准确的簇帧位姿。系统根据视差准则将视频帧聚类。接下来,通过一种变分方法并行计算簇帧之间的密集匹配,该方法结合了零均值归一化互相关和梯度 Huber 范数正则化。这种组合可以在现代 GPU 上以可承受的时间预算应对具有挑战性的光照和纹理。它可以胜过纯立体重建,因为从内窥镜运动的角度来看,帧聚类可以提供更大的视差。我们在猪腹腔的真实序列上进行了广泛的实验验证,包括体内和体外。我们还在人类肝脏上进行了定性评估。此外,我们还与其他密集 SLAM 方法进行了比较,展示了在准确性、密度和计算时间方面的性能提升。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验