Department of Biosciences, Department of Neurobiology, A.I.Virtanen Institute for Molecular Sciences, Biocenter Finland, Kuopio, Finland.
Bioinformatics. 2011 May 1;27(9):1247-54. doi: 10.1093/bioinformatics/btr144. Epub 2011 Mar 21.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate transcriptional processes via binding to the target gene mRNA. In animals, this binding is imperfect, which makes the computational prediction of animal miRNA targets a challenging task. The accuracy of miRNA target prediction can be improved with the use of machine learning methods. Previous work has described methods using supervised learning, but they suffer from the lack of adequate training examples, a common problem in miRNA target identification, which often leads to deficient generalization ability.
In this work, we introduce mirSOM, a miRNA target prediction tool based on clustering of short 3(')-untranslated region (3(')-UTR) substrings with self-organizing map (SOM). As our method uses unsupervised learning and a large set of verified Caenorhabditis elegans 3(')-UTRs, we did not need to resort to training using a known set of targets. Our method outperforms seven other methods in predicting the experimentally verified C.elegans true and false miRNA targets.
mirSOM miRNA target predictions are available at http://kokki.uku.fi/bioinformatics/mirsom.
微小 RNA(miRNAs)是通过与靶基因 mRNA 结合来调节转录过程的小非编码 RNA。在动物中,这种结合是不完美的,这使得动物 miRNA 靶标的计算预测成为一项具有挑战性的任务。可以使用机器学习方法来提高 miRNA 靶标预测的准确性。以前的工作已经描述了使用监督学习的方法,但它们存在缺乏足够的训练示例的问题,这是 miRNA 靶标识别中的一个常见问题,这往往导致概括能力不足。
在这项工作中,我们引入了 mirSOM,这是一种基于自组织映射(SOM)的短 3'(未翻译区)(3'UTR)子串聚类的 miRNA 靶标预测工具。由于我们的方法使用无监督学习和一组经过验证的秀丽隐杆线虫 3'UTR,因此我们不需要使用已知的靶标集进行训练。我们的方法在预测实验验证的秀丽隐杆线虫真实和假 miRNA 靶标方面优于其他七种方法。
mirSOM miRNA 靶标预测可在 http://kokki.uku.fi/bioinformatics/mirsom 上获得。