INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, 75005 Paris, France.
Sorbonne University, UPMC Univ Paris 06, UM CR18, 75005 Paris, France.
J Neurosci. 2018 Aug 29;38(35):7667-7682. doi: 10.1523/JNEUROSCI.3203-17.2018. Epub 2018 Jul 16.
Spontaneous network activity (SNA) emerges in the spinal cord (SC) before the formation of peripheral sensory inputs and central descending inputs. SNA is characterized by recurrent giant depolarizing potentials (GDPs). Because GDPs in motoneurons (MNs) are mainly evoked by prolonged release of GABA, they likely necessitate sustained firing of interneurons. To address this issue we analyzed, as a model, embryonic Renshaw cell (V1) activity at the onset of SNA (E12.5) in the embryonic mouse SC (both sexes). V1 are one of the interneurons known to contact MNs, which are generated early in the embryonic SC. Here, we show that V1 already produce GABA in E12.5 embryo, and that V1 make synaptic-like contacts with MNs and have putative extrasynaptic release sites, while paracrine release of GABA occurs at this developmental stage. In addition, we discovered that V1 are spontaneously active during SNA and can already generate several intrinsic activity patterns including repetitive-spiking and sodium-dependent plateau potential that rely on the presence of persistent sodium currents (). This is the first demonstration that is present in the embryonic SC and that this current can control intrinsic activation properties of newborn interneurons in the SC of mammalian embryos. Finally, we found that 5 μm riluzole, which is known to block , altered SNA by reducing episode duration and increasing inter-episode interval. Because SNA is essential for neuronal maturation, axon pathfinding, and synaptogenesis, the presence of in embryonic SC neurons may play a role in the early development of mammalian locomotor networks. The developing spinal cord (SC) exhibits spontaneous network activity (SNA) involved in the building of nascent locomotor circuits in the embryo. Many studies suggest that SNA depends on the rhythmic release of GABA, yet intracellular recordings of GABAergic neurons have never been performed at the onset of SNA in the SC. We first discovered that embryonic Renshaw cells (V1) are GABAergic at E12.5 and spontaneously active during SNA. We uncover a new role for persistent sodium currents () in driving plateau potential in V1 and in SNA patterning in the embryonic SC. Our study thus sheds light on a role for NaP in the excitability of V1 and the developing SC.
脊髓中的自发性网络活动 (SNA) 在形成外周感觉输入和中枢下行输入之前出现。SNA 的特征是反复出现的巨大去极化电位 (GDP)。由于运动神经元 (MN) 中的 GDP 主要是由 GABA 的长时间释放引起的,因此它们可能需要中间神经元的持续放电。为了解决这个问题,我们分析了胚胎期小鼠脊髓 (E12.5) 中 SNA 起始时的 Renshaw 细胞 (V1) 活动 (两性) 作为模型。V1 是已知与 MN 接触的中间神经元之一,MN 早在胚胎脊髓中就产生了。在这里,我们表明 V1 在 E12.5 胚胎中已经产生 GABA,并且 V1 与 MN 形成突触样接触并有潜在的 extrasynaptic 释放位点,而 GABA 的旁分泌释放发生在这个发育阶段。此外,我们发现 V1 在 SNA 期间自发活动,并且已经可以产生几种内在活动模式,包括重复放电和依赖钠离子的平台电位,这依赖于持续钠离子电流 () 的存在。这是第一个证明 在胚胎脊髓中存在,并且该电流可以控制哺乳动物胚胎脊髓中新生中间神经元的内在激活特性。最后,我们发现,已知可阻断 的 5 μm 利鲁唑通过减少发作持续时间和增加发作间隔来改变 SNA。由于 SNA 对于神经元成熟、轴突寻路和突触发生是必不可少的,因此 存在于胚胎脊髓神经元中可能在哺乳动物运动网络的早期发育中发挥作用。发育中的脊髓 (SC) 表现出自发的网络活动 (SNA),参与胚胎中新生运动回路的构建。许多研究表明 SNA 依赖于 GABA 的节律释放,但在 SC 中的 SNA 起始时从未进行过 GABA 能神经元的细胞内记录。我们首先发现,胚胎期 Renshaw 细胞 (V1) 在 E12.5 时为 GABA 能,并在 SNA 期间自发活动。我们揭示了持续钠离子电流 () 在驱动 V1 中的平台电位和 SNA 在胚胎脊髓中的模式形成中的新作用。因此,我们的研究揭示了 NaP 在 V1 和发育中的 SC 兴奋性中的作用。