Suppr超能文献

小儿中耳炎自动诊断算法的研发。

Development of an Automatic Diagnostic Algorithm for Pediatric Otitis Media.

机构信息

Institute of Translational and Interdisciplinary Medicine and Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.

School of Electrical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam.

出版信息

Otol Neurotol. 2018 Sep;39(8):1060-1065. doi: 10.1097/MAO.0000000000001897.

Abstract

HYPOTHESIS

The artificial intelligence and image processing technology can develop automatic diagnostic algorithm for pediatric otitis media (OM) with accuracy comparable to that from well-trained otologists.

BACKGROUND

OM is a public health issue that occurs commonly in pediatric population. Caring for OM may incur significant indirect cost that stems mainly from loss of school or working days seeking for medical consultation. It makes great sense for the homecare of OM. In this study, we aim to develop an automatic diagnostic algorithm for pediatric OM.

METHODS

A total of 1,230 otoscopic images were collected. Among them, 214 images diagnosed of acute otitis media (AOM) and otitis media with effusion (OME) are used as the database for image classification in this study. For the OM image classification system, the image database is randomly partitioned into the test and train subsets. Of each image in the train and test sets, the desired eardrum image region is first segmented, then multiple image features such as color, and shape are extracted. The multitask joint sparse representation-based classification to combine different features of the OM image is used for classification.

RESULTS

The multitask joint sparse representation algorithm was applied for the classification of the AOM and OME images. The approach is able to differentiate the OME from AOM images and achieves the classification accuracy as high as 91.41%.

CONCLUSION

Our results demonstrated that this automatic diagnosis algorithm has acceptable accuracy to diagnose pediatric OM. The cost-effective algorithm can assist parents for early detection and continuous monitoring at home to decrease consequence of the disease.

摘要

假设

人工智能和图像处理技术可以开发出一种准确性可与训练有素的耳科医生相媲美的小儿中耳炎(OM)自动诊断算法。

背景

OM 是儿科人群中常见的公共卫生问题。治疗 OM 可能会产生巨大的间接成本,主要源于因就诊而损失的上学或工作天数。因此,在家中治疗 OM 非常有意义。在这项研究中,我们旨在开发一种用于小儿 OM 的自动诊断算法。

方法

共收集了 1230 张耳镜图像。其中,214 张诊断为急性中耳炎(AOM)和分泌性中耳炎(OME)的图像用于本研究的图像分类数据库。对于 OM 图像分类系统,将图像数据库随机划分为测试集和训练集。对于训练集和测试集中的每张图像,首先对所需鼓膜图像区域进行分割,然后提取多种图像特征,如颜色和形状。使用多任务联合稀疏表示分类来组合 OM 图像的不同特征进行分类。

结果

应用多任务联合稀疏表示算法对 AOM 和 OME 图像进行分类。该方法能够区分 OME 和 AOM 图像,分类准确率高达 91.41%。

结论

我们的结果表明,这种自动诊断算法具有可接受的准确性,可以诊断小儿 OM。这种具有成本效益的算法可以帮助父母在家中进行早期发现和持续监测,以减少疾病的后果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验