Fang Te-Yung, Lin Tse-Yu, Shen Chung-Min, Hsu Su-Yi, Lin Shing-Huey, Kuo Yu-Jung, Chen Ming-Hsu, Yin Tan-Kuei, Liu Chih-Hsien, Lo Men-Tzung, Wang Pa-Chun
Department of Otolaryngology, Cathay General Hospital, Taipei, Taiwan.
School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.
Otolaryngol Head Neck Surg. 2024 Jun;170(6):1590-1597. doi: 10.1002/ohn.738. Epub 2024 Mar 28.
The COVID-19 pandemic has spurred a growing demand for telemedicine. Artificial intelligence and image processing systems with wireless transmission functionalities can facilitate remote care for otitis media (OM). Accordingly, this study developed and validated an algorithm-driven tele-otoscope system equipped with Wi-Fi transmission and a cloud-based automatic OM diagnostic algorithm.
Prospective, cross-sectional, diagnostic study.
Tertiary Academic Medical Center.
We designed a tele-otoscope (Otiscan, SyncVision Technology Corp) equipped with digital imaging and processing modules, Wi-Fi transmission capabilities, and an automatic OM diagnostic algorithm. A total of 1137 otoscopic images, comprising 987 images of normal cases and 150 images of cases of acute OM and OM with effusion, were used as the dataset for image classification. Two convolutional neural network models, trained using our dataset, were used for raw image segmentation and OM classification.
The tele-otoscope delivered images with a resolution of 1280 × 720 pixels. Our tele-otoscope effectively differentiated OM from normal images, achieving a classification accuracy rate of up to 94% (sensitivity, 80%; specificity, 96%).
Our study demonstrated that the developed tele-otoscope has acceptable accuracy in diagnosing OM. This system can assist health care professionals in early detection and continuous remote monitoring, thus mitigating the consequences of OM.
新型冠状病毒肺炎大流行促使对远程医疗的需求不断增长。具有无线传输功能的人工智能和图像处理系统可促进中耳炎(OM)的远程护理。因此,本研究开发并验证了一种配备Wi-Fi传输和基于云的自动OM诊断算法的算法驱动远程耳镜系统。
前瞻性横断面诊断研究。
三级学术医疗中心。
我们设计了一种远程耳镜(Otiscan,SyncVision Technology Corp),其配备数字成像和处理模块、Wi-Fi传输功能以及自动OM诊断算法。总共1137张耳镜图像,包括987张正常病例图像和150张急性OM及渗出性OM病例图像,用作图像分类的数据集。使用我们的数据集训练的两个卷积神经网络模型用于原始图像分割和OM分类。
该远程耳镜传输的图像分辨率为1280×720像素。我们的远程耳镜能有效区分OM与正常图像,分类准确率高达94%(敏感性80%;特异性96%)。
我们的研究表明,所开发的远程耳镜在诊断OM方面具有可接受的准确性。该系统可协助医护人员进行早期检测和持续远程监测,从而减轻OM的后果。