Suppr超能文献

研究使用两阶段注意力感知卷积神经网络对鼓室膜图像进行中耳炎的自动诊断:预测模型的开发和验证研究。

Investigating the use of a two-stage attention-aware convolutional neural network for the automated diagnosis of otitis media from tympanic membrane images: a prediction model development and validation study.

机构信息

Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.

Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.

出版信息

BMJ Open. 2021 Jan 21;11(1):e041139. doi: 10.1136/bmjopen-2020-041139.

Abstract

OBJECTIVES

This study investigated the usefulness and performance of a two-stage attention-aware convolutional neural network (CNN) for the automated diagnosis of otitis media from tympanic membrane (TM) images.

DESIGN

A classification model development and validation study in ears with otitis media based on otoscopic TM images. Two commonly used CNNs were trained and evaluated on the dataset. On the basis of a Class Activation Map (CAM), a two-stage classification pipeline was developed to improve accuracy and reliability, and simulate an expert reading the TM images.

SETTING AND PARTICIPANTS

This is a retrospective study using otoendoscopic images obtained from the Department of Otorhinolaryngology in China. A dataset was generated with 6066 otoscopic images from 2022 participants comprising four kinds of TM images, that is, normal eardrum, otitis media with effusion (OME) and two stages of chronic suppurative otitis media (CSOM).

RESULTS

The proposed method achieved an overall accuracy of 93.4% using ResNet50 as the backbone network in a threefold cross-validation. The F1 Score of classification for normal images was 94.3%, and 96.8% for OME. There was a small difference between the active and inactive status of CSOM, achieving 91.7% and 82.4% F1 scores, respectively. The results demonstrate a classification performance equivalent to the diagnosis level of an associate professor in otolaryngology.

CONCLUSIONS

CNNs provide a useful and effective tool for the automated classification of TM images. In addition, having a weakly supervised method such as CAM can help the network focus on discriminative parts of the image and improve performance with a relatively small database. This two-stage method is beneficial to improve the accuracy of diagnosis of otitis media for junior otolaryngologists and physicians in other disciplines.

摘要

目的

本研究旨在探讨一种两阶段注意感知卷积神经网络(CNN)在自动诊断鼓膜炎方面的实用性和性能。

设计

一项基于鼓膜炎图像的中耳疾病分类模型开发和验证研究。使用两种常用的 CNN 对数据集进行训练和评估。在此基础上,开发了一种两阶段分类管道,以提高准确性和可靠性,并模拟专家阅读 TM 图像。

设置和参与者

这是一项回顾性研究,使用中国耳鼻喉科的耳内镜图像。该数据集由 2022 名参与者的 6066 个耳镜图像组成,包括四种 TM 图像,即正常鼓膜、分泌性中耳炎(OME)和两种慢性化脓性中耳炎(CSOM)阶段。

结果

使用 ResNet50 作为骨干网络,在三折交叉验证中,所提出的方法的整体准确率为 93.4%。正常图像分类的 F1 分数为 94.3%,OME 为 96.8%。CSOM 的活跃和不活跃状态之间存在微小差异,分别达到 91.7%和 82.4%的 F1 分数。结果表明,分类性能与耳鼻喉科副教授的诊断水平相当。

结论

CNN 为 TM 图像的自动分类提供了一种有用且有效的工具。此外,使用 CAM 等弱监督方法可以帮助网络关注图像的有区别部分,并在相对较小的数据库中提高性能。这种两阶段方法有利于提高初级耳鼻喉科医生和其他学科医生对中耳炎诊断的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验