Suppr超能文献

基于同源重组的干细胞衍生 clade F AAV 介导高效基因组编辑。

Stem cell-derived clade F AAVs mediate high-efficiency homologous recombination-based genome editing.

机构信息

Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010.

Homology Medicines, Inc., Bedford, MA 01730.

出版信息

Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7379-E7388. doi: 10.1073/pnas.1802343115. Epub 2018 Jul 17.

Abstract

The precise correction of genetic mutations at the nucleotide level is an attractive permanent therapeutic strategy for human disease. However, despite significant progress, challenges to efficient and accurate genome editing persist. Here, we report a genome editing platform based upon a class of hematopoietic stem cell (HSC)-derived clade F adeno-associated virus (AAV), which does not require prior nuclease-mediated DNA breaks and functions exclusively through BRCA2-dependent homologous recombination. Genome editing is guided by complementary homology arms and is highly accurate and seamless, with no evidence of on-target mutations, including insertion/deletions or inclusion of AAV inverted terminal repeats. Efficient genome editing was demonstrated at different loci within the human genome, including a safe harbor locus, AAVS1, and the therapeutically relevant IL2RG gene, and at the murine Rosa26 locus. HSC-derived AAV vector (AAVHSC)-mediated genome editing was robust in primary human cells, including CD34 cells, adult liver, hepatic endothelial cells, and myocytes. Importantly, high-efficiency gene editing was achieved in vivo upon a single i.v. injection of AAVHSC editing vectors in mice. Thus, clade F AAV-mediated genome editing represents a promising, highly efficient, precise, single-component approach that enables the development of therapeutic in vivo genome editing for the treatment of a multitude of human gene-based diseases.

摘要

精确纠正核苷酸水平的基因突变是人类疾病有吸引力的永久性治疗策略。然而,尽管取得了重大进展,但高效和准确的基因组编辑仍然存在挑战。在这里,我们报告了一种基于一类造血干细胞(HSC)衍生的 clade F 腺相关病毒(AAV)的基因组编辑平台,它不需要预先进行核酸酶介导的 DNA 断裂,而是通过 BRCA2 依赖性同源重组起作用。基因组编辑由互补同源臂指导,具有高度的准确性和无缝性,没有靶基因突变的证据,包括插入/缺失或包含 AAV 反向末端重复序列。在人类基因组的不同基因座中,包括安全港基因座 AAVS1 和治疗相关的 IL2RG 基因以及小鼠的 Rosa26 基因座中,都证明了高效的基因组编辑。HSC 衍生的 AAV 载体(AAVHSC)介导的基因组编辑在包括 CD34 细胞、成人肝脏、肝内皮细胞和肌细胞在内的原代人类细胞中非常稳健。重要的是,在小鼠中单次静脉注射 AAVHSC 编辑载体后,体内就能实现高效的基因编辑。因此,clade F AAV 介导的基因组编辑代表了一种有前途的、高效的、精确的、单一成分的方法,能够开发用于治疗多种人类基于基因的疾病的体内治疗性基因组编辑。

相似文献

1
Stem cell-derived clade F AAVs mediate high-efficiency homologous recombination-based genome editing.
Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7379-E7388. doi: 10.1073/pnas.1802343115. Epub 2018 Jul 17.
2
Homologous Recombination-Based Genome Editing by Clade F AAVs Is Inefficient in the Absence of a Targeted DNA Break.
Mol Ther. 2019 Oct 2;27(10):1726-1736. doi: 10.1016/j.ymthe.2019.08.019. Epub 2019 Sep 9.
3
Nuclease-free Adeno-Associated Virus-Mediated Il2rg Gene Editing in X-SCID Mice.
Mol Ther. 2018 May 2;26(5):1255-1265. doi: 10.1016/j.ymthe.2018.02.028. Epub 2018 Mar 6.
5
Molecular characterization of precise in vivo targeted gene integration in human cells using AAVHSC15.
PLoS One. 2020 May 26;15(5):e0233373. doi: 10.1371/journal.pone.0233373. eCollection 2020.
6
Improved Genome Editing through Inhibition of FANCM and Members of the BTR Dissolvase Complex.
Mol Ther. 2021 Mar 3;29(3):1016-1027. doi: 10.1016/j.ymthe.2020.10.020. Epub 2020 Oct 22.
7
Efficient editing of OTC-deficient patient-derived primary human hepatocytes.
JHEP Rep. 2019 Dec 27;2(1):100065. doi: 10.1016/j.jhepr.2019.100065. eCollection 2020 Feb.
8
The Role of Recombinant AAV in Precise Genome Editing.
Front Genome Ed. 2022 Jan 13;3:799722. doi: 10.3389/fgeed.2021.799722. eCollection 2021.
9
CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors.
Cell Rep. 2017 Jul 18;20(3):750-756. doi: 10.1016/j.celrep.2017.06.064.
10

引用本文的文献

2
Nuclease-free precise genome editing corrects MECP2 mutations associated with Rett syndrome.
Front Genome Ed. 2024 Mar 1;6:1346781. doi: 10.3389/fgeed.2024.1346781. eCollection 2024.
3
Rational Design of AAV-rh74, AAV3B, and AAV8 with Limited Liver Targeting.
Viruses. 2023 Oct 28;15(11):2168. doi: 10.3390/v15112168.
4
Inhibition of DNA-dependent protein kinase catalytic subunit boosts rAAV transduction of polarized human airway epithelium.
Mol Ther Methods Clin Dev. 2023 Sep 21;31:101115. doi: 10.1016/j.omtm.2023.101115. eCollection 2023 Dec 14.
5
In search of an ideal template for therapeutic genome editing: A review of current developments for structure optimization.
Front Genome Ed. 2023 Feb 22;5:1068637. doi: 10.3389/fgeed.2023.1068637. eCollection 2023.
6
Natural variations in AAVHSC16 significantly reduce liver tropism and maintain broad distribution to periphery and CNS.
Mol Ther Methods Clin Dev. 2022 Jun 30;26:224-238. doi: 10.1016/j.omtm.2022.06.013. eCollection 2022 Sep 8.
7
Durability of transgene expression after rAAV gene therapy.
Mol Ther. 2022 Apr 6;30(4):1364-1380. doi: 10.1016/j.ymthe.2022.03.004. Epub 2022 Mar 10.
8
The Role of Recombinant AAV in Precise Genome Editing.
Front Genome Ed. 2022 Jan 13;3:799722. doi: 10.3389/fgeed.2021.799722. eCollection 2021.
9
Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells.
Mol Ther. 2021 Nov 3;29(11):3205-3218. doi: 10.1016/j.ymthe.2021.09.001. Epub 2021 Sep 10.
10
M2 macrophages, but not M1 macrophages, support megakaryopoiesis by upregulating PI3K-AKT pathway activity.
Signal Transduct Target Ther. 2021 Jun 18;6(1):234. doi: 10.1038/s41392-021-00627-y.

本文引用的文献

1
Survival Advantage of Both Human Hepatocyte Xenografts and Genome-Edited Hepatocytes for Treatment of α-1 Antitrypsin Deficiency.
Mol Ther. 2017 Nov 1;25(11):2477-2489. doi: 10.1016/j.ymthe.2017.09.020. Epub 2017 Sep 25.
2
The control of DNA repair by the cell cycle.
Nat Cell Biol. 2016 Dec 23;19(1):1-9. doi: 10.1038/ncb3452.
3
CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes.
Cell. 2017 Jan 12;168(1-2):20-36. doi: 10.1016/j.cell.2016.10.044. Epub 2016 Nov 17.
5
Interplay between Fanconi anemia and homologous recombination pathways in genome integrity.
EMBO J. 2016 May 2;35(9):909-23. doi: 10.15252/embj.201693860. Epub 2016 Apr 1.
7
8
Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors.
Nat Biotechnol. 2015 Dec;33(12):1256-1263. doi: 10.1038/nbt.3408. Epub 2015 Nov 9.
10
Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template.
Sci Transl Med. 2015 Sep 30;7(307):307ra156. doi: 10.1126/scitranslmed.aac5530.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验