Suppr超能文献

利用腺相关病毒供体载体通过CRISPR介导的大基因盒整合

CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors.

作者信息

Bak Rasmus O, Porteus Matthew H

机构信息

Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.

出版信息

Cell Rep. 2017 Jul 18;20(3):750-756. doi: 10.1016/j.celrep.2017.06.064.

Abstract

The CRISPR/Cas9 system has recently been shown to facilitate high levels of precise genome editing using adeno-associated viral (AAV) vectors to serve as donor template DNA during homologous recombination (HR). However, the maximum AAV packaging capacity of ∼4.5 kb limits the donor size. Here, we overcome this constraint by showing that two co-transduced AAV vectors can serve as donors during consecutive HR events for the integration of large transgenes. Importantly, the method involves a single-step procedure applicable to primary cells with relevance to therapeutic genome editing. We use the methodology in primary human T cells and CD34 hematopoietic stem and progenitor cells to site-specifically integrate an expression cassette that, as a single donor vector, would otherwise amount to a total of 6.5 kb. This approach now provides an efficient way to integrate large transgene cassettes into the genomes of primary human cells using HR-mediated genome editing with AAV vectors.

摘要

最近研究表明,在同源重组(HR)过程中,CRISPR/Cas9系统可利用腺相关病毒(AAV)载体作为供体模板DNA,实现高水平的精确基因组编辑。然而,AAV约4.5 kb的最大包装容量限制了供体大小。在此,我们通过证明两个共转导的AAV载体可在连续的HR事件中作为供体,用于大转基因的整合,从而克服了这一限制。重要的是,该方法涉及一个适用于与治疗性基因组编辑相关的原代细胞的单步程序。我们在原代人T细胞和CD34造血干细胞及祖细胞中使用该方法,将一个表达盒位点特异性整合,若作为单个供体载体,其总长度将达6.5 kb。这种方法现在提供了一种有效的方式,可利用AAV载体通过HR介导的基因组编辑,将大转基因盒整合到原代人细胞的基因组中。

相似文献

1
CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors.
Cell Rep. 2017 Jul 18;20(3):750-756. doi: 10.1016/j.celrep.2017.06.064.
2
Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors.
Methods Mol Biol. 2016;1382:21-39. doi: 10.1007/978-1-4939-3271-9_2.
4
Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
Methods Mol Biol. 2018;1715:113-133. doi: 10.1007/978-1-4939-7522-8_9.
5
Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration.
Mol Ther. 2021 Apr 7;29(4):1611-1624. doi: 10.1016/j.ymthe.2020.12.010. Epub 2020 Dec 10.
6
Improved Genome Editing through Inhibition of FANCM and Members of the BTR Dissolvase Complex.
Mol Ther. 2021 Mar 3;29(3):1016-1027. doi: 10.1016/j.ymthe.2020.10.020. Epub 2020 Oct 22.
7
Intracellular generation of single-strand template increases the knock-in efficiency by combining CRISPR/Cas9 with AAV.
Mol Genet Genomics. 2018 Aug;293(4):1051-1060. doi: 10.1007/s00438-018-1437-2. Epub 2018 Apr 18.
8
Use of AAV Vectors for CRISPR-Mediated In Vivo Genome Editing in the Retina.
Methods Mol Biol. 2019;1950:123-139. doi: 10.1007/978-1-4939-9139-6_7.
9
AAV-CRISPR Gene Editing Is Negated by Pre-existing Immunity to Cas9.
Mol Ther. 2020 Jun 3;28(6):1432-1441. doi: 10.1016/j.ymthe.2020.04.017. Epub 2020 Apr 19.
10
Construction and packaging of herpes simplex virus/adeno-associated virus (HSV/AAV) Hybrid amplicon vectors.
Cold Spring Harb Protoc. 2012 Mar 1;2012(3):352-6. doi: 10.1101/pdb.prot068114.

引用本文的文献

1
Hematopoietic stem cell gene therapy for the treatment of X-linked agammaglobulinemia.
Mol Ther Methods Clin Dev. 2025 Aug 12;33(3):101555. doi: 10.1016/j.omtm.2025.101555. eCollection 2025 Sep 11.
2
Machine learning techniques for lipid nanoparticle formulation.
Nano Converg. 2025 Jul 15;12(1):35. doi: 10.1186/s40580-025-00502-4.
3
Ligand-modified rAAV6 vectors with nanoblades allow high-level gene knockin in HSPCs without compromising cell survival.
Mol Ther Nucleic Acids. 2025 Feb 22;36(2):102495. doi: 10.1016/j.omtn.2025.102495. eCollection 2025 Jun 10.
5
Genome engineering with Cas9 and AAV repair templates, successes and pitfalls.
Mamm Genome. 2025 Jan 13. doi: 10.1007/s00335-024-10099-4.
7
9
Emerging Gene-editing nano-therapeutics for Cancer.
Heliyon. 2024 Oct 20;10(21):e39323. doi: 10.1016/j.heliyon.2024.e39323. eCollection 2024 Nov 15.
10
The potential of HBV cure: an overview of CRISPR-mediated HBV gene disruption.
Front Genome Ed. 2024 Oct 9;6:1467449. doi: 10.3389/fgeed.2024.1467449. eCollection 2024.

本文引用的文献

1
Genome-wide Specificity of Highly Efficient TALENs and CRISPR/Cas9 for T Cell Receptor Modification.
Mol Ther Methods Clin Dev. 2017 Feb 12;4:213-224. doi: 10.1016/j.omtm.2017.01.005. eCollection 2017 Mar 17.
3
The Convenience of Single Homology Arm Donor DNA and CRISPR/Cas9-Nickase for Targeted Insertion of Long DNA Fragment.
Cell J. 2017 Winter;18(4):532-539. doi: 10.22074/cellj.2016.4719. Epub 2016 Sep 26.
4
CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells.
Nature. 2016 Nov 17;539(7629):384-389. doi: 10.1038/nature20134. Epub 2016 Nov 7.
5
Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells.
Sci Transl Med. 2016 Oct 12;8(360):360ra134. doi: 10.1126/scitranslmed.aaf9336.
6
CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells.
Mol Ther. 2016 Sep;24(9):1561-9. doi: 10.1038/mt.2016.148. Epub 2016 Jul 29.
7
Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo.
Nat Biotechnol. 2016 Mar;34(3):328-33. doi: 10.1038/nbt.3471. Epub 2016 Feb 1.
8
A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice.
Nat Biotechnol. 2016 Mar;34(3):334-8. doi: 10.1038/nbt.3469. Epub 2016 Feb 1.
9
Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids.
Hum Gene Ther Methods. 2016 Feb;27(1):1-12. doi: 10.1089/hgtb.2015.140.
10
Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors.
Nat Biotechnol. 2015 Dec;33(12):1256-1263. doi: 10.1038/nbt.3408. Epub 2015 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验