The Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS.
The Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA.
Acad Emerg Med. 2019 Jan;26(1):97-105. doi: 10.1111/acem.13520. Epub 2018 Aug 16.
For a variety of reasons including cheap computing, widespread adoption of electronic medical records, digitalization of imaging and biosignals, and rapid development of novel technologies, the amount of health care data being collected, recorded, and stored is increasing at an exponential rate. Yet despite these advances, methods for the valid, efficient, and ethical utilization of these data remain underdeveloped. Emergency care research, in particular, poses several unique challenges in this rapidly evolving field. A group of content experts was recently convened to identify research priorities related to barriers to the application of data science to emergency care research. These recommendations included: 1) developing methods for cross-platform identification and linkage of patients; 2) creating central, deidentified, open-access databases; 3) improving methodologies for visualization and analysis of intensively sampled data; 4) developing methods to identify and standardize electronic medical record data quality; 5) improving and utilizing natural language processing; 6) developing and utilizing syndrome or complaint-based based taxonomies of disease; 7) developing practical and ethical framework to leverage electronic systems for controlled trials; 8) exploring technologies to help enable clinical trials in the emergency setting; and 9) training emergency care clinicians in data science and data scientists in emergency care medicine. The background, rationale, and conclusions of these recommendations are included in the present article.
由于计算成本低廉、电子病历广泛采用、成像和生物信号数字化以及新型技术的快速发展等多种原因,医疗保健数据的采集、记录和存储量呈指数级增长。然而,尽管取得了这些进展,但有效、高效和合乎道德地利用这些数据的方法仍未得到充分发展。特别是在这个快速发展的领域,急救护理研究带来了一些独特的挑战。最近召集了一组内容专家,以确定与将数据科学应用于急救护理研究相关的障碍有关的研究重点。这些建议包括:1)开发跨平台识别和链接患者的方法;2)创建中央、去识别、开放获取的数据库;3)改进用于可视化和分析密集采样数据的方法;4)开发用于识别和标准化电子病历数据质量的方法;5)改进和利用自然语言处理;6)开发和利用基于综合征或主诉的疾病分类法;7)制定实用和合乎道德的框架,利用电子系统进行对照试验;8)探索有助于在紧急情况下进行临床试验的技术;9)培训急救护理临床医生数据科学和急救医学数据科学家。本文包括这些建议的背景、基本原理和结论。