Suppr超能文献

动态模式分解与其他数据驱动模型在肺癌发病率预测方面的比较。

Comparison of dynamic mode decomposition with other data-driven models for lung cancer incidence rate prediction.

作者信息

Guo L Raymond, Tan Jifu, Hughes M Courtney

机构信息

Department of Interdisciplinary Sciences, Northern Illinois University, DeKalb, IL, United States.

Department of Mechanical Engineering, Northern Illinois University, DeKalb, IL, United States.

出版信息

Front Public Health. 2025 Apr 25;13:1472398. doi: 10.3389/fpubh.2025.1472398. eCollection 2025.

Abstract

INTRODUCTION

Public health data analysis is critical to understanding disease trends. Existing analysis methods struggle with the complexity of public health data, which includes both location and time factors. Machine learning offers powerful tools but can be computationally expensive and require specialized knowledge. Dynamic mode decomposition (DMD) is an alternative that offers efficient analysis with fewer resources. This study explores applying DMD in public health using lung cancer data and compares it with other machine learning models.

METHODS

We analyzed lung cancer incidence data (2000-2021) from 1,013 US counties. Machine learning models (random forest, gradient boosting machine, support vector machine) were trained and optimized on the training data. We also employed time series, a linear regression model, and DMD for comparison. All models were evaluated based on their ability to predict 2021 lung cancer incidence rates.

RESULTS

The time series model achieved the lowest root mean squared error, followed by random forest. Meanwhile, DMD had an RMSE similar to that of Random Forest. Nearly all counties in Kentucky had higher lung cancer incidence rates, while states like California, New Mexico, Utah, and Idaho showed lower trends.

CONCLUSION

In summary, DMD offers a promising alternative for public health professionals to capture underlying trends and potentially have lower computational demands compared to other machine learning models.

摘要

引言

公共卫生数据分析对于理解疾病趋势至关重要。现有的分析方法难以应对公共卫生数据的复杂性,这类数据包含地点和时间因素。机器学习提供了强大的工具,但计算成本高昂且需要专业知识。动态模式分解(DMD)是一种能以较少资源进行高效分析的替代方法。本研究探索将DMD应用于公共卫生领域的肺癌数据,并将其与其他机器学习模型进行比较。

方法

我们分析了来自美国1013个县的肺癌发病率数据(2000 - 2021年)。在训练数据上对机器学习模型(随机森林、梯度提升机、支持向量机)进行训练和优化。我们还采用了时间序列、线性回归模型以及DMD进行比较。所有模型均根据其预测2021年肺癌发病率的能力进行评估。

结果

时间序列模型的均方根误差最低,其次是随机森林。同时,DMD的均方根误差与随机森林相近。肯塔基州几乎所有县的肺癌发病率都较高,而加利福尼亚州、新墨西哥州、犹他州和爱达荷州等州的发病率呈下降趋势。

结论

总之,对于公共卫生专业人员而言,DMD为捕捉潜在趋势提供了一种有前景的替代方法,并且与其他机器学习模型相比,其计算需求可能更低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4c/12062055/bbe8358bebdd/fpubh-13-1472398-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验