IEEE Trans Pattern Anal Mach Intell. 2019 Sep;41(9):2208-2221. doi: 10.1109/TPAMI.2018.2855738. Epub 2018 Jul 19.
Scattering networks are a class of designed Convolutional Neural Networks (CNNs) with fixed weights. We argue they can serve as generic representations for modelling images. In particular, by working in scattering space, we achieve competitive results both for supervised and unsupervised learning tasks, while making progress towards constructing more interpretable CNNs. For supervised learning, we demonstrate that the early layers of CNNs do not necessarily need to be learned, and can be replaced with a scattering network instead. Indeed, using hybrid architectures, we achieve the best results with predefined representations to-date, while being competitive with end-to-end learned CNNs. Specifically, even applying a shallow cascade of small-windowed scattering coefficients followed by $1\times 1$1×1-convolutions results in AlexNet accuracy on the ILSVRC2012 classification task. Moreover, by combining scattering networks with deep residual networks, we achieve a single-crop top-5 error of 11.4 percent on ILSVRC2012. Also, we show they can yield excellent performance in the small sample regime on CIFAR-10 and STL-10 datasets, exceeding their end-to-end counterparts, through their ability to incorporate geometrical priors. For unsupervised learning, scattering coefficients can be a competitive representation that permits image recovery. We use this fact to train hybrid GANs to generate images. Finally, we empirically analyze several properties related to stability and reconstruction of images from scattering coefficients.
散射网络是一类具有固定权重的设计卷积神经网络 (CNN)。我们认为它们可以作为建模图像的通用表示。特别是,通过在散射空间中工作,我们在监督和无监督学习任务中都取得了有竞争力的结果,同时朝着构建更具可解释性的 CNN 迈进。对于监督学习,我们证明 CNN 的早期层不一定需要学习,可以用散射网络代替。实际上,通过使用混合架构,我们使用预先定义的表示形式实现了迄今为止最好的结果,同时与端到端学习的 CNN 具有竞争力。具体来说,即使应用由小窗口散射系数组成的浅层级联,然后是 1×11×1 卷积,也能在 ILSVRC2012 分类任务中达到 AlexNet 的精度。此外,通过将散射网络与深度残差网络相结合,我们在 ILSVRC2012 上实现了单作物 5%的错误率为 11.4%。此外,我们还展示了它们在 CIFAR-10 和 STL-10 数据集的小样本情况下可以通过其结合几何先验的能力,提供出色的性能,超过了其端到端的同类产品。对于无监督学习,散射系数可以作为一种具有竞争力的表示形式,允许图像恢复。我们利用这一事实来训练混合 GAN 生成图像。最后,我们从经验上分析了与从散射系数重建图像的稳定性和重建相关的几个属性。