IEEE Trans Image Process. 2019 Jan;28(1):45-55. doi: 10.1109/TIP.2018.2857219. Epub 2018 Jul 18.
We propose a deep learning approach for directly estimating relative atmospheric visibility from outdoor photos without relying on weather images or data that require expensive sensing or custom capture. Our data-driven approach capitalizes on a large collection of Internet images to learn rich scene and visibility varieties. The relative CNN-RNN coarse-to-fine model, where CNN stands for convolutional neural network and RNN stands for recurrent neural network, exploits the joint power of relative support vector machine, which has a good ranking representation, and the data-driven deep learning features derived from our novel CNN-RNN model. The CNN-RNN model makes use of shortcut connections to bridge a CNN module and an RNN coarse-to-fine module. The CNN captures the global view while the RNN simulates human's attention shift, namely, from the whole image (global) to the farthest discerned region (local). The learned relative model can be adapted to predict absolute visibility in limited scenarios. Extensive experiments and comparisons are performed to verify our method. We have built an annotated dataset consisting of about 40000 images with 0.2 million human annotations. The large-scale, annotated visibility data set will be made available to accompany this paper.
我们提出了一种深度学习方法,可以直接从户外照片估计相对大气能见度,而无需依赖需要昂贵传感器或定制采集的天气图像或数据。我们的数据驱动方法利用了大量互联网图像来学习丰富的场景和能见度变化。相对 CNN-RNN 粗到细模型,其中 CNN 代表卷积神经网络,RNN 代表递归神经网络,利用相对支持向量机的联合能力,具有良好的排序表示,以及从我们的新型 CNN-RNN 模型中得出的数据驱动深度学习特征。CNN-RNN 模型利用快捷连接来桥接 CNN 模块和 RNN 粗到细模块。CNN 捕获全局视图,而 RNN 模拟人类的注意力转移,即从整个图像(全局)到最远可辨别的区域(局部)。学习到的相对模型可以适应有限场景下的绝对能见度预测。进行了广泛的实验和比较来验证我们的方法。我们构建了一个包含大约 40000 张图像和约 200 万个人工注释的标注数据集。大规模的、标注的能见度数据集将随本文提供。