Mafi Mehdi, Rajaei Hoda, Cabrerizo Mercedes, Adjouadi Malek
IEEE Trans Image Process. 2018 Jul 18. doi: 10.1109/TIP.2018.2857448.
This study introduces a robust edge detection method that relies on an integrated process for denoising images in the presence of high impulse noise. This process is shown to be resilient to impulse (or salt and pepper) noise even under high intensity levels. The proposed switching adaptive median and fixed weighted mean filter (SAMFWMF) is shown to yield optimal edge detection and edge detail preservation, an outcome we validate through high correlation, structural similarity index and peak signal to noise ratio measures. For comparative purposes, a comprehensive analysis of other denoising filters is provided based on these various validation metrics. The nonmaximum suppression method and new edge following maximum-sequence are two techniques used to track the edges and overcome edge discontinuities and noisy pixels, especially in the presence of high-intensity noise levels. After applying predefined thresholds to the grayscale image and thus obtaining a binary image, several morphological operations are used to remove the unwanted edges and noisy pixels, perform edge thinning to ultimately provide the desired edge connectivity which results in an optimal edge detection method. The obtained results are compared to other existing state-of-the-art denoising filters and other edge detection methods in support of our assertion that the proposed method is resilient to impulse noise even under high-intensity levels.
本研究介绍了一种强大的边缘检测方法,该方法依赖于一种在存在高脉冲噪声时对图像进行去噪的集成过程。即使在高强度水平下,该过程也被证明对脉冲(或椒盐)噪声具有弹性。所提出的切换自适应中值和固定加权均值滤波器(SAMFWMF)被证明能产生最佳的边缘检测和边缘细节保留效果,我们通过高相关性、结构相似性指数和峰值信噪比测量来验证这一结果。为了进行比较,基于这些不同的验证指标对其他去噪滤波器进行了全面分析。非极大值抑制方法和新的边缘跟踪最大序列是用于跟踪边缘并克服边缘不连续性和噪声像素的两种技术,特别是在存在高强度噪声水平的情况下。在对灰度图像应用预定义阈值从而获得二值图像后,使用几种形态学操作来去除不需要的边缘和噪声像素,进行边缘细化以最终提供所需的边缘连通性,从而得到一种最佳的边缘检测方法。将获得的结果与其他现有的先进去噪滤波器和其他边缘检测方法进行比较,以支持我们的观点,即所提出的方法即使在高强度水平下也能抵抗脉冲噪声。