Suppr超能文献

经颅直流电刺激调节局部运动皮质兴奋性导致双侧运动皮质神经化学变化。

Modulating Regional Motor Cortical Excitability with Noninvasive Brain Stimulation Results in Neurochemical Changes in Bilateral Motor Cortices.

机构信息

Nuffield Department of Clinical Neurosciences, Functional Magnetic Resonance Imaging of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, United Kingdom, and.

Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, United Kingdom.

出版信息

J Neurosci. 2018 Aug 15;38(33):7327-7336. doi: 10.1523/JNEUROSCI.2853-17.2018. Epub 2018 Jul 20.

Abstract

Learning a novel motor skill is dependent both on regional changes within the primary motor cortex (M1) contralateral to the active hand and also on modulation between and within anatomically distant but functionally connected brain regions. Interregional changes are particularly important in functional recovery after stroke, when critical plastic changes underpinning behavioral improvements are observed in both ipsilesional and contralesional M1s. It is increasingly understood that reduction in GABA in the contralateral M1 is necessary to allow learning of a motor task. However, the physiological mechanisms underpinning plasticity within other brain regions, most importantly the ipsilateral M1, are not well understood. Here, we used concurrent two-voxel magnetic resonance spectroscopy to simultaneously quantify changes in neurochemicals within left and right M1s in healthy humans of both sexes in response to transcranial direct current stimulation (tDCS) applied to left M1. We demonstrated a decrease in GABA in both the stimulated (left) and nonstimulated (right) M1 after anodal tDCS, whereas a decrease in GABA was only observed in nonstimulated M1 after cathodal stimulation. This GABA decrease in the nonstimulated M1 during cathodal tDCS was negatively correlated with microstructure of M1:M1 callosal fibers, as quantified by diffusion MRI, suggesting that structural features of these fibers may mediate GABA decrease in the unstimulated region. We found no significant changes in glutamate. Together, these findings shed light on the interactions between the two major network nodes underpinning motor plasticity, offering a potential framework from which to optimize future interventions to improve motor function after stroke. Learning of new motor skills depends on modulation both within and between brain regions. Here, we use a novel two-voxel magnetic resonance spectroscopy approach to quantify GABA and glutamate changes concurrently within the left and right primary motor cortex (M1) during three commonly used transcranial direct current stimulation montages: anodal, cathodal, and bilateral. We also examined how the neurochemical changes in the unstimulated hemisphere were related to white matter microstructure between the two M1s. Our results provide insights into the neurochemical changes underlying motor plasticity and may therefore assist in the development of further adjunct therapies.

摘要

学习新的运动技能既依赖于主动手对侧初级运动皮层(M1)的区域变化,也依赖于解剖上遥远但功能上连接的脑区之间和内部的调制。在中风后的功能恢复中,区域间的变化尤为重要,此时观察到对侧和同侧 M1 中都存在支持行为改善的关键可塑性变化。人们越来越理解,对侧 M1 中 GABA 的减少对于运动任务的学习是必要的。然而,对于其他脑区(特别是同侧 M1)内可塑性的生理机制尚不清楚。在这里,我们使用并发双体素磁共振波谱技术,同时量化了健康男性和女性双侧 M1 中的神经化学物质变化,以响应应用于左侧 M1 的经颅直流电刺激(tDCS)。我们发现,阳极 tDCS 后,刺激侧(左侧)和未刺激侧(右侧)M1 中的 GABA 均减少,而阴极刺激后仅观察到未刺激 M1 中的 GABA 减少。阴极 tDCS 期间未刺激 M1 中的 GABA 减少与 M1:M1 胼胝体纤维的微观结构呈负相关,这是通过扩散 MRI 定量的,表明这些纤维的结构特征可能介导未刺激区域中 GABA 的减少。我们没有发现谷氨酸的显著变化。总之,这些发现揭示了支持运动可塑性的两个主要网络节点之间的相互作用,为优化未来干预措施以改善中风后的运动功能提供了一个潜在的框架。新运动技能的学习取决于脑区内部和之间的调制。在这里,我们使用一种新的双体素磁共振波谱方法,在三种常用的经颅直流电刺激模式(阳极、阴极和双侧)期间同时定量左、右初级运动皮层(M1)内 GABA 和谷氨酸的变化。我们还检查了未刺激半球中的神经化学变化与两个 M1 之间的白质微观结构之间的关系。我们的研究结果提供了对运动可塑性背后的神经化学变化的深入了解,因此可能有助于进一步辅助治疗方法的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a5a/6096041/192f6054aa48/zns9991810130001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验