Taranda Julian, Maison Stéphane F, Ballestero Jimena A, Katz Eleonora, Savino Jessica, Vetter Douglas E, Boulter Jim, Liberman M Charles, Fuchs Paul A, Elgoyhen A Belén
Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
PLoS Biol. 2009 Jan 20;7(1):e18. doi: 10.1371/journal.pbio.1000018.
The transduction of sound in the auditory periphery, the cochlea, is inhibited by efferent cholinergic neurons projecting from the brainstem and synapsing directly on mechanosensory hair cells. One fundamental question in auditory neuroscience is what role(s) this feedback plays in our ability to hear. In the present study, we have engineered a genetically modified mouse model in which the magnitude and duration of efferent cholinergic effects are increased, and we assess the consequences of this manipulation on cochlear function. We generated the Chrna9L9'T line of knockin mice with a threonine for leucine change (L9'T) at position 9' of the second transmembrane domain of the alpha9 nicotinic cholinergic subunit, rendering alpha9-containing receptors that were hypersensitive to acetylcholine and had slower desensitization kinetics. The Chrna9L9'T allele produced a 3-fold prolongation of efferent synaptic currents in vitro. In vivo, Chrna9L9'T mice had baseline elevation of cochlear thresholds and efferent-mediated inhibition of cochlear responses was dramatically enhanced and lengthened: both effects were reversed by strychnine blockade of the alpha9alpha10 hair cell nicotinic receptor. Importantly, relative to their wild-type littermates, Chrna9(L9'T/L9'T) mice showed less permanent hearing loss following exposure to intense noise. Thus, a point mutation designed to alter alpha9alpha10 receptor gating has provided an animal model in which not only is efferent inhibition more powerful, but also one in which sound-induced hearing loss can be restrained, indicating the ability of efferent feedback to ameliorate sound trauma.
从脑干投射并直接与机械感觉毛细胞形成突触的传出胆碱能神经元会抑制听觉外周(耳蜗)中的声音转导。听觉神经科学中的一个基本问题是这种反馈在我们的听力中起什么作用。在本研究中,我们构建了一种基因改造小鼠模型,其中传出胆碱能效应的强度和持续时间增加,并且我们评估了这种操作对耳蜗功能的影响。我们生成了Chrna9L9'T敲入小鼠品系,其α9烟碱胆碱能亚基的第二个跨膜结构域第9'位的亮氨酸被苏氨酸取代(L9'T),使得含α9的受体对乙酰胆碱超敏感且脱敏动力学较慢。Chrna9L9'T等位基因在体外使传出突触电流延长了3倍。在体内,Chrna9L9'T小鼠的耳蜗阈值基线升高,传出介导的耳蜗反应抑制显著增强且延长:这两种效应都可通过士的宁对α9α10毛细胞烟碱受体的阻断而逆转。重要的是,相对于它们的野生型同窝小鼠,Chrna9(L9'T/L9'T)小鼠在暴露于高强度噪声后永久性听力损失较小。因此,一个旨在改变α9α10受体门控的点突变提供了一种动物模型,其中不仅传出抑制更强,而且声音诱导的听力损失也可以得到抑制,这表明传出反馈具有改善声音创伤的能力。