The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; School of Dentistry and Oral Health, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
School of Dentistry and Oral Health, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
Mater Sci Eng C Mater Biol Appl. 2018 Oct 1;91:624-630. doi: 10.1016/j.msec.2018.05.075. Epub 2018 May 28.
This letter describes a simple surface modification strategy based on a single-step electrochemical anodization towards generating dual micro- and nano-rough horizontally-aligned TiO nanopores on the surface of clinically utilized micro-grooved titanium implants. Primary macrophages, osteoblasts and fibroblasts were cultured on the nano-engineered implants, and it was demonstrated that the modified surfaces selectively reduced the proliferation of macrophages (immunomodulation), while augmenting the activity of osteoblasts (osseo-integration) and fibroblasts (soft-tissue integration). Additionally, the mechanically robust nanopores also stimulated osteoblast and fibroblast adhesion, attachment and alignment along the direction of the pores/grooves, while macrophages remained oval-shaped and sparsely distributed. This study for the first time reports the use of cost-effectively prepared nano-engineered titanium surface via anodization, with aligned multi-scale micro/nano features for selective cellular bioactivity, without the use of any therapeutics.
这封信描述了一种基于一步电化学阳极氧化的简单表面改性策略,可在临床应用的微槽钛植入物表面生成双微观和纳米粗糙水平排列的 TiO 纳米孔。将原代巨噬细胞、成骨细胞和成纤维细胞培养在纳米工程植入物上,结果表明,改性表面选择性地降低了巨噬细胞的增殖(免疫调节),同时增强了成骨细胞的活性(骨整合)和成纤维细胞的活性(软组织整合)。此外,机械强度高的纳米孔还刺激成骨细胞和成纤维细胞沿着孔/槽的方向附着、黏附和排列,而巨噬细胞保持椭圆形且稀疏分布。本研究首次报道了使用经济高效的电化学阳极氧化法制备具有定向多尺度微/纳米特征的纳米工程钛表面,用于选择性的细胞生物活性,而无需使用任何治疗药物。