Abbott Laboratories, Abbott Park, IL, USA.
The University of Chicago Medicine, Center for Arrhythmia Care | Heart and Vascular Center, Pritzker School of Medicine, Chicago, IL, USA.
Comput Biol Med. 2018 Nov 1;102:336-340. doi: 10.1016/j.compbiomed.2018.07.012. Epub 2018 Jul 18.
Sinus rhythm surrogates for critical isthmus sites are highly desirable because the vast majority of VT is hemodynamically unstable. While many ablation strategies to decrease the arrhythmogenicity of scar have been shown to be effective, the predominant method for electroanatomic mapping relies on a voltage-based depiction of scar and abnormal electrograms. A functional prioritization of slow conduction, distinct from late activation, is feasible in clinical practice with the creation of isochronal late activation maps. Regions of slow conduction are easily visualized with isochronal displays of baseline intrinsic rhythm activation and deceleration zones, where isochrones crowd, have been observed to have strong correlation with successful ablation sites. Automated annotation of the offset of local electrograms was developed to create the propagation maps to incorporate electrogram width and completion of local activation. Simple conduction velocity estimates where three isochrones are seen within a 1 cm radium confirm that deceleration zones harbor conduction velocity of <0.6 m/s. We present a practical methodology of analyzing electroanatomic substrate in a voltage-independent manner with correlation to reentrant VT. Non-linear 3D transmyocardial conduction limits the validity of conduction velocity estimates that assume planar and tangential conduction and we show an example of a patient with 3D isthmus boundaries with an activation gap on the epicardial surface during tachycardia.
窦性心律替代关键峡部部位是非常理想的,因为绝大多数 VT 是血流动力学不稳定的。虽然已经证明许多减少瘢痕致心律失常性的消融策略是有效的,但电生理标测的主要方法仍然依赖于基于电压的瘢痕和异常电图的描述。在临床实践中,通过创建等时性晚期激活图,可以实现与晚期激活不同的慢传导功能优先级。在等时性显示基础内在节律激活和减速区时,很容易观察到慢传导区,等时线密集的区域与成功消融部位具有很强的相关性。开发了自动注释局部电图的偏移量,以创建传播图,纳入电信号宽度和局部激活的完成。在 1cm 镭射范围内看到三个等时线的情况下,可以进行简单的传导速度估计,这可以确认减速区的传导速度<0.6m/s。我们提出了一种实用的方法,以电压独立的方式分析电生理基质,并与折返性 VT 相关联。非线性 3D 透壁传导限制了假设平面和切线传导的传导速度估计的有效性,我们展示了一个 3D 峡部边界的患者的例子,在心动过速期间心外膜表面存在激活间隙。