Suppr超能文献

实验鼠体温与血糖变化的关系:对日常蛰伏的影响。

Changes in blood glucose as a function of body temperature in laboratory mice: implications for daily torpor.

机构信息

Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna , Italy.

Department of Biology, Williams College , Williamstown, Massachusetts.

出版信息

Am J Physiol Endocrinol Metab. 2018 Oct 1;315(4):E662-E670. doi: 10.1152/ajpendo.00201.2018. Epub 2018 Jul 24.

Abstract

Many small mammals, such as the laboratory mouse, utilize the hypometabolic state of torpor in response to caloric restriction. The signals that relay the lack of fuel to initiate a bout of torpor are not known. Because the mouse will only enter a torpid state when calorically challenged, it may be that one of the inputs for initiation into a bout of torpor is the lack of the primary fuel (glucose) used to power brain metabolism in the mouse. Using glucose telemetry in mice, we tested the hypotheses that 1) circulating glucose (GLC), core body temperature (T), and activity are significantly interrelated; and 2) that the level of GLC at the onset of torpor differs from both GLC during arousal from torpor and during feeding when there is no torpor. To test these hypotheses, six C57Bl/6J mice were implanted with glucose telemeters and exposed to different feeding conditions (ad libitum, fasting, limited food intake, and refeeding) to create different levels of GLC and T. We found a strong positive and linear correlation between GLC and T during ad libitum feeding. Furthermore, mice that were calorically restricted entered torpor bouts readily. GLC was low during torpor entry but did not drop precipitously as T did at the onset of a torpor bout. GLC significantly increased during arousal from torpor, indicating the presence of endogenous glucose production. While low GLC itself was not predictive of a bout of torpor, hyperactivity and low GLC preceded the onset of torpor, suggesting that this may be involved in triggering torpor.

摘要

许多小型哺乳动物,如实验鼠,会在受到热量限制时进入代谢率降低的蛰伏状态。但目前尚不清楚引发蛰伏的信号是什么。由于小鼠只有在受到热量挑战时才会进入蛰伏状态,因此引发蛰伏的一个可能输入信号是缺乏主要燃料(葡萄糖),而葡萄糖是为小鼠大脑代谢提供能量的燃料。我们利用小鼠的葡萄糖遥测技术,测试了以下两个假说:1)循环葡萄糖(GLC)、核心体温(T)和活动之间存在显著的相互关系;2)在蛰伏开始时的 GLC 水平与从蛰伏中苏醒时的 GLC 水平以及在没有蛰伏时进食时的 GLC 水平不同。为了验证这些假说,我们将六只 C57Bl/6J 小鼠植入葡萄糖遥测仪,并使其暴露在不同的进食条件(自由进食、禁食、限制食物摄入量和重新进食)下,以创造不同的 GLC 和 T 水平。我们发现,在自由进食期间,GLC 与 T 之间存在强烈的正线性相关。此外,热量限制的小鼠很容易进入蛰伏状态。在蛰伏开始时,GLC 水平较低,但 T 下降幅度没有那么大。在从蛰伏中苏醒时,GLC 显著增加,表明存在内源性葡萄糖生成。虽然低 GLC 本身并不能预测蛰伏状态,但高活跃度和低 GLC 先于蛰伏状态出现,这表明这可能与触发蛰伏有关。

相似文献

2
Cardiovascular changes during daily torpor in the laboratory mouse.实验室小鼠每日蛰伏期间的心血管变化。
Am J Physiol Regul Integr Comp Physiol. 2009 Sep;297(3):R769-74. doi: 10.1152/ajpregu.00131.2009. Epub 2009 Jul 8.
6
Activation of oxytocinergic neurons enhances torpor in mice.催产素能神经元的激活增强了小鼠的蛰伏状态。
J Comp Physiol B. 2024 Feb;194(1):95-104. doi: 10.1007/s00360-023-01528-y. Epub 2024 Jan 3.
8
Factors limiting the duration of artificially induced torpor in mice.限制小鼠人工诱导蛰伏持续时间的因素。
Life Sci Space Res (Amst). 2020 Feb;24:34-41. doi: 10.1016/j.lssr.2019.10.008. Epub 2019 Nov 11.
9
Mitochondrial metabolism during fasting-induced daily torpor in mice.小鼠禁食诱导的每日蛰伏期间的线粒体代谢
Biochim Biophys Acta. 2010 Apr;1797(4):476-86. doi: 10.1016/j.bbabio.2010.01.009. Epub 2010 Jan 18.

引用本文的文献

8
The physiological signature of daily torpor is not orexin dependent.周期性蛰眠的生理特征与食欲素无关。
J Comp Physiol B. 2020 Jul;190(4):493-507. doi: 10.1007/s00360-020-01281-6. Epub 2020 May 12.
9
Neural control of fasting-induced torpor in mice.小鼠禁食诱导蛰伏的神经控制。
Sci Rep. 2019 Oct 29;9(1):15462. doi: 10.1038/s41598-019-51841-2.

本文引用的文献

3
The Central Control of Energy Expenditure: Exploiting Torpor for Medical Applications.能量消耗的中枢控制:利用蛰伏状态的医学应用。
Annu Rev Physiol. 2017 Feb 10;79:167-186. doi: 10.1146/annurev-physiol-022516-034133. Epub 2016 Oct 28.
4
Autonomic Nervous System and the Liver.自主神经系统与肝脏
Hepatol Res. 2017 Feb;47(2):160-165. doi: 10.1111/hepr.12760. Epub 2016 Jul 26.
5
Torpor and hypothermia: reversed hysteresis of metabolic rate and body temperature.蛰伏与体温过低:代谢率与体温的反向滞后现象
Am J Physiol Regul Integr Comp Physiol. 2014 Dec 1;307(11):R1324-9. doi: 10.1152/ajpregu.00214.2014. Epub 2014 Sep 24.
6
Circadian control of glucose metabolism.葡萄糖代谢的昼夜节律控制。
Mol Metab. 2014 Mar 19;3(4):372-83. doi: 10.1016/j.molmet.2014.03.002. eCollection 2014 Jul.
7
Profound changes in blood parameters during torpor in a South American marsupial.在南美有袋动物的蛰伏过程中血液参数发生深刻变化。
Comp Biochem Physiol A Mol Integr Physiol. 2013 Oct;166(2):338-42. doi: 10.1016/j.cbpa.2013.07.010. Epub 2013 Jul 10.
8
Hibernation.冬眠。
Curr Biol. 2013 Mar 4;23(5):R188-93. doi: 10.1016/j.cub.2013.01.062.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验