Suppr超能文献

miR-324-5p 通过靶向病毒 PB1 和宿主 CUEDC2 抑制 H5N1 病毒复制。

MicroRNA hsa-miR-324-5p Suppresses H5N1 Virus Replication by Targeting the Viral PB1 and Host CUEDC2.

机构信息

Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, Madhya Pradesh, India.

Department of Microbiology, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India.

出版信息

J Virol. 2018 Sep 12;92(19). doi: 10.1128/JVI.01057-18. Print 2018 Oct 1.

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that are crucial posttranscriptional regulators for host mRNAs. Recent studies indicate that miRNAs may modulate host response during RNA virus infection. However, the role of miRNAs in immune response against H5N1 infection is not clearly understood. In this study, we showed that expression of cellular miRNA miR-324-5p was downregulated in A549 cells in response to infection with RNA viruses H5N1, A/PR8/H1N1, and Newcastle disease virus (NDV) and transfection with poly(I·C). We found that miR-324-5p inhibited H5N1 replication by targeting the PB1 viral RNA of H5N1 in host cells. In addition, transcriptome analysis revealed that miR-324-5p enhanced the expression of type I interferon, type III interferon, and interferon-inducible genes (ISGs) by targeting CUEDC2, the negative regulator of the JAK1-STAT3 pathway. Together, these findings highlight that the miR-324-5p plays a crucial role in host defense against H5N1 by targeting viral PB1 and host CUEDC2 to inhibit H5N1 replication. Highly pathogenic influenza A virus (HPAIV) continues to pose a pandemic threat globally. From 2003 to 2017, H5N1 HPAIV caused 453 human deaths, giving it a high mortality rate (52.74%). This work shows that miR-324-5p suppresses H5N1 HPAIV replication by directly targeting the viral genome (thereby inhibiting viral gene expression) and cellular CUEDC2 gene, the negative regulator of the interferon pathway (thereby enhancing antiviral genes). Our study enhances the knowledge of the role of microRNAs in the cellular response to viral infection. Also, the study provides help in understanding how the host cells utilize small RNAs in controlling the viral burden.

摘要

微小 RNA(miRNAs)是一种小的非编码 RNA,是宿主 mRNA 转录后调控的关键因素。最近的研究表明,miRNAs 可能在 RNA 病毒感染期间调节宿主反应。然而,miRNAs 在对抗 H5N1 感染的免疫反应中的作用尚不清楚。在这项研究中,我们表明,细胞 miRNA miR-324-5p 的表达在 A549 细胞中受到 RNA 病毒 H5N1、A/PR8/H1N1 和新城疫病毒(NDV)感染以及 poly(I·C)转染的下调。我们发现 miR-324-5p 通过靶向宿主细胞中 H5N1 的 PB1 病毒 RNA 抑制 H5N1 的复制。此外,转录组分析显示,miR-324-5p 通过靶向 JAK1-STAT3 通路的负调节剂 CUEDC2,增强了 I 型干扰素、III 型干扰素和干扰素诱导基因(ISGs)的表达。综上所述,这些发现强调了 miR-324-5p 通过靶向病毒 PB1 和宿主 CUEDC2 抑制 H5N1 复制,在宿主防御 H5N1 中发挥关键作用。高致病性流感病毒(HPAIV)继续在全球构成大流行威胁。自 2003 年至 2017 年,H5N1 HPAIV 导致 453 人死亡,死亡率很高(52.74%)。这项工作表明,miR-324-5p 通过直接靶向病毒基因组(从而抑制病毒基因表达)和细胞 CUEDC2 基因(干扰素通路的负调节剂)抑制 H5N1 HPAIV 复制,从而抑制 H5N1 HPAIV 复制。我们的研究增强了对微小 RNA 在细胞对病毒感染反应中的作用的认识。此外,该研究有助于理解宿主细胞如何利用小 RNA 来控制病毒负担。

相似文献

1
MicroRNA hsa-miR-324-5p Suppresses H5N1 Virus Replication by Targeting the Viral PB1 and Host CUEDC2.
J Virol. 2018 Sep 12;92(19). doi: 10.1128/JVI.01057-18. Print 2018 Oct 1.
2
The highly pathogenic H5N1 influenza A virus down-regulated several cellular MicroRNAs which target viral genome.
J Cell Mol Med. 2017 Nov;21(11):3076-3086. doi: 10.1111/jcmm.13219. Epub 2017 Jun 13.
4
MicroRNA gga-miR-455-5p suppresses Newcastle disease virus replication via targeting cellular suppressors of cytokine signaling 3.
Vet Microbiol. 2019 Dec;239:108460. doi: 10.1016/j.vetmic.2019.108460. Epub 2019 Oct 14.
6
Human miR-3145 inhibits influenza A viruses replication by targeting and silencing viral PB1 gene.
Exp Biol Med (Maywood). 2015 Dec;240(12):1630-9. doi: 10.1177/1535370215589051. Epub 2015 Jun 15.

引用本文的文献

1
Influenza Virus Genomic Mutations, Host Barrier and Cross-species Transmission.
Curr Genomics. 2025;26(3):161-174. doi: 10.2174/0113892029316603240926051325. Epub 2024 Oct 11.
2
Interferon and immunity: the role of microRNA in viral evasion strategies.
Front Immunol. 2025 May 9;16:1567459. doi: 10.3389/fimmu.2025.1567459. eCollection 2025.
3
Clade 2.3.4.4b highly pathogenic avian influenza H5N1 viruses: knowns, unknowns, and challenges.
J Virol. 2025 Jun 17;99(6):e0042425. doi: 10.1128/jvi.00424-25. Epub 2025 May 9.
5
A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection.
Med Res Rev. 2025 Mar;45(2):349-425. doi: 10.1002/med.22073. Epub 2024 Aug 26.
6
Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs.
Pathogens. 2024 Jan 29;13(2):127. doi: 10.3390/pathogens13020127.
8
Interplay of host and viral factors in inflammatory pathway mediated cytokine storm during RNA virus infection.
Curr Res Immunol. 2023 May 26;4:100062. doi: 10.1016/j.crimmu.2023.100062. eCollection 2023.
9
Long Noncoding RNA AROD Inhibits Host Antiviral Innate Immunity via the miR-324-5p-CUEDC2 Axis.
Microbiol Spectr. 2023 Jun 15;11(3):e0420622. doi: 10.1128/spectrum.04206-22. Epub 2023 Apr 10.
10
A review on the role of miRNA-324 in various diseases.
Front Genet. 2022 Aug 10;13:950162. doi: 10.3389/fgene.2022.950162. eCollection 2022.

本文引用的文献

1
The highly pathogenic H5N1 influenza A virus down-regulated several cellular MicroRNAs which target viral genome.
J Cell Mol Med. 2017 Nov;21(11):3076-3086. doi: 10.1111/jcmm.13219. Epub 2017 Jun 13.
3
MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset.
Cell Rep. 2016 Sep 27;17(1):37-45. doi: 10.1016/j.celrep.2016.08.074.
4
The ecology and adaptive evolution of influenza A interspecies transmission.
Influenza Other Respir Viruses. 2017 Jan;11(1):74-84. doi: 10.1111/irv.12412. Epub 2016 Aug 8.
5
Enrichr: a comprehensive gene set enrichment analysis web server 2016 update.
Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7. doi: 10.1093/nar/gkw377. Epub 2016 May 3.
6
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update.
Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10. doi: 10.1093/nar/gkw343. Epub 2016 May 2.
8
Amantadine resistance among highly pathogenic avian influenza viruses (H5N1) isolated from India.
Microb Pathog. 2016 Feb;91:35-40. doi: 10.1016/j.micpath.2015.11.008. Epub 2015 Nov 27.
10
Regulation of influenza virus infection by long non-coding RNAs.
Virus Res. 2016 Jan 2;212:78-84. doi: 10.1016/j.virusres.2015.08.008. Epub 2015 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验