Suppr超能文献

通过合成对未标注的视网膜眼底图像进行有监督分割。

Supervised Segmentation of Un-Annotated Retinal Fundus Images by Synthesis.

出版信息

IEEE Trans Med Imaging. 2019 Jan;38(1):46-56. doi: 10.1109/TMI.2018.2854886. Epub 2018 Jul 24.

Abstract

We focus on the practical challenge of segmenting new retinal fundus images that are dissimilar to existing well-annotated data sets. It is addressed in this paper by a supervised learning pipeline, with its core being the construction of a synthetic fundus image data set using the proposed R-sGAN technique. The resulting synthetic images are realistic-looking in terms of the query images while maintaining the annotated vessel structures from the existing data set. This helps to bridge the mismatch between the query images and the existing well-annotated data set. As a consequence, any known supervised fundus segmentation technique can be directly utilized on the query images, after training on this synthetic data set. Extensive experiments on different fundus image data sets demonstrate the competitiveness of the proposed approach in dealing with a diverse range of mismatch settings.

摘要

我们专注于分割新的视网膜眼底图像的实际挑战,这些图像与现有标注良好的数据集不相似。本文通过一个监督学习管道来解决这个问题,其核心是使用提出的 R-sGAN 技术构建一个合成眼底图像数据集。生成的合成图像在查询图像方面看起来很真实,同时保留了现有数据集的标注血管结构。这有助于弥合查询图像和现有标注数据集之间的不匹配。因此,在这个合成数据集上进行训练后,任何已知的有监督眼底分割技术都可以直接应用于查询图像。在不同的眼底图像数据集上进行的广泛实验表明,该方法在处理各种不匹配设置方面具有竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验