Suppr超能文献

基于弱监督深度学习框架的稳健内容自适应多模态视网膜图像全局配准。

Robust Content-Adaptive Global Registration for Multimodal Retinal Images Using Weakly Supervised Deep-Learning Framework.

出版信息

IEEE Trans Image Process. 2021;30:3167-3178. doi: 10.1109/TIP.2021.3058570. Epub 2021 Feb 25.

Abstract

Multimodal retinal imaging plays an important role in ophthalmology. We propose a content-adaptive multimodal retinal image registration method in this paper that focuses on the globally coarse alignment and includes three weakly supervised neural networks for vessel segmentation, feature detection and description, and outlier rejection. We apply the proposed framework to register color fundus images with infrared reflectance and fluorescein angiography images, and compare it with several conventional and deep learning methods. Our proposed framework demonstrates a significant improvement in robustness and accuracy reflected by a higher success rate and Dice coefficient compared with other methods.

摘要

多模态视网膜成像是眼科学中一个重要的研究领域。本文提出了一种基于内容自适应的多模态视网膜图像配准方法,该方法侧重于全局粗略配准,并包含三个弱监督神经网络,用于血管分割、特征检测和描述以及异常值剔除。我们将所提出的框架应用于彩色眼底图像与红外反射和荧光血管造影图像的配准,并与几种传统和深度学习方法进行了比较。与其他方法相比,我们提出的框架在成功率和 Dice 系数等方面表现出更高的鲁棒性和准确性,取得了显著的改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验