Suppr超能文献

局部敏感连通性滤波器(LS-CF):用于多模态血管分割的Frangi、Hessian和血管性滤波器的后处理无监督改进方法

Local-Sensitive Connectivity Filter (LS-CF): A Post-Processing Unsupervised Improvement of the Frangi, Hessian and Vesselness Filters for Multimodal Vessel Segmentation.

作者信息

Rodrigues Erick O, Rodrigues Lucas O, Machado João H P, Casanova Dalcimar, Teixeira Marcelo, Oliva Jeferson T, Bernardes Giovani, Liatsis Panos

机构信息

Department of Academic Informatics (DAINF), Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco 85503-390, PR, Brazil.

Graduate Program of Sciences Applied to Health Products, Universidade Federal Fluminense (UFF), Niteroi 24241-000, RJ, Brazil.

出版信息

J Imaging. 2022 Oct 21;8(10):291. doi: 10.3390/jimaging8100291.

Abstract

A retinal vessel analysis is a procedure that can be used as an assessment of risks to the eye. This work proposes an unsupervised multimodal approach that improves the response of the Frangi filter, enabling automatic vessel segmentation. We propose a filter that computes pixel-level vessel continuity while introducing a local tolerance heuristic to fill in vessel discontinuities produced by the Frangi response. This proposal, called the local-sensitive connectivity filter (LS-CF), is compared against a naive connectivity filter to the baseline thresholded Frangi filter response and to the naive connectivity filter response in combination with the morphological closing and to the current approaches in the literature. The proposal was able to achieve competitive results in a variety of multimodal datasets. It was robust enough to outperform all the state-of-the-art approaches in the literature for the OSIRIX angiographic dataset in terms of accuracy and 4 out of 5 works in the case of the IOSTAR dataset while also outperforming several works in the case of the DRIVE and STARE datasets and 6 out of 10 in the CHASE-DB dataset. For the CHASE-DB, it also outperformed all the state-of-the-art unsupervised methods.

摘要

视网膜血管分析是一种可用于评估眼部风险的程序。这项工作提出了一种无监督多模态方法,该方法改进了Frangi滤波器的响应,实现了血管的自动分割。我们提出了一种滤波器,它在计算像素级血管连续性的同时,引入了一种局部容差启发式方法来填补由Frangi响应产生的血管不连续性。这个提议被称为局部敏感连通性滤波器(LS-CF),并与朴素连通性滤波器、基于基线阈值化Frangi滤波器响应的朴素连通性滤波器、结合形态学闭运算的朴素连通性滤波器响应以及文献中的当前方法进行了比较。该提议在各种多模态数据集中都能取得有竞争力的结果。在OSIRIX血管造影数据集方面,它足够强大,在准确性上超过了文献中所有的最新方法;在IOSTAR数据集中,在5项工作中有4项超过了最新方法;在DRIVE和STARE数据集中,也超过了几项工作;在CHASE-DB数据集中,在10项工作中有6项超过了最新方法。对于CHASE-DB数据集,它还超过了所有最新的无监督方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c9c/9604711/f7c3c72bde92/jimaging-08-00291-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验