Suppr超能文献

用于合成视网膜图像生成的WGAN-GP:增强基于传感器的医学成像以用于分类模型

WGAN-GP for Synthetic Retinal Image Generation: Enhancing Sensor-Based Medical Imaging for Classification Models.

作者信息

Anaya-Sánchez Héctor, Altamirano-Robles Leopoldo, Díaz-Hernández Raquel, Zapotecas-Martínez Saúl

机构信息

Computer Science Department, Instituto Nacional de Astrofísica Óptica y Electrónica, Luis Enrrique Erro No. 1, Sta. María Tonantzintla, Puebla 72840, Mexico.

Optics Department, Instituto Nacional de Astrofísica Óptica y Electrónica, Luis Enrrique Erro No. 1, Sta. María Tonantzintla, Puebla 72840, Mexico.

出版信息

Sensors (Basel). 2024 Dec 31;25(1):167. doi: 10.3390/s25010167.

Abstract

Accurate synthetic image generation is crucial for addressing data scarcity challenges in medical image classification tasks, particularly in sensor-derived medical imaging. In this work, we propose a novel method using a Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) and nearest-neighbor interpolation to generate high-quality synthetic images for diabetic retinopathy classification. Our approach enhances training datasets by generating realistic retinal images that retain critical pathological features. We evaluated the method across multiple retinal image datasets, including Retinal-Lesions, Fine-Grained Annotated Diabetic Retinopathy (FGADR), Indian Diabetic Retinopathy Image Dataset (IDRiD), and the Kaggle Diabetic Retinopathy dataset. The proposed method outperformed traditional generative models, such as conditional GANs and PathoGAN, achieving the best performance on key metrics: a Fréchet Inception Distance (FID) of 15.21, a Mean Squared Error (MSE) of 0.002025, and a Structural Similarity Index (SSIM) of 0.89 in the Kaggle dataset. Additionally, expert evaluations revealed that only 56.66% of synthetic images could be distinguished from real ones, demonstrating the high fidelity and clinical relevance of the generated data. These results highlight the effectiveness of our approach in improving medical image classification by generating realistic and diverse synthetic datasets.

摘要

准确的合成图像生成对于应对医学图像分类任务中的数据稀缺挑战至关重要,尤其是在传感器衍生的医学成像中。在这项工作中,我们提出了一种新颖的方法,使用带有梯度惩罚的瓦瑟斯坦生成对抗网络(WGAN-GP)和最近邻插值来生成用于糖尿病视网膜病变分类的高质量合成图像。我们的方法通过生成保留关键病理特征的逼真视网膜图像来增强训练数据集。我们在多个视网膜图像数据集上评估了该方法,包括视网膜病变数据集、细粒度注释糖尿病视网膜病变(FGADR)数据集、印度糖尿病视网膜病变图像数据集(IDRiD)以及Kaggle糖尿病视网膜病变数据集。所提出的方法优于传统生成模型,如条件生成对抗网络和病理生成对抗网络,在关键指标上取得了最佳性能:在Kaggle数据集中,弗雷歇因袭距离(FID)为15.21,均方误差(MSE)为0.002025,结构相似性指数(SSIM)为0.89。此外,专家评估表明,只有56.66%的合成图像能够与真实图像区分开来,这表明所生成数据具有高保真度和临床相关性。这些结果突出了我们的方法通过生成逼真且多样的合成数据集来改善医学图像分类的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/544c/11723073/71dbd6fd58f6/sensors-25-00167-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验