Max-Planck-Institut für Kohlenforschung , Mülheim an der Ruhr 45470 , Germany.
J Chem Theory Comput. 2018 Sep 11;14(9):4756-4771. doi: 10.1021/acs.jctc.8b00624. Epub 2018 Aug 15.
Analytic calculation of nuclear magnetic resonance chemical shielding tensors, based on gauge-including atomic orbitals, is implemented for double-hybrid density functional theory (DHDFT), using the resolution of the identity (RI) approximation for its second order Møller-Plesset perturbation theory (MP2) correlation contributions. A benchmark set of 15 small molecules, containing H, C, N, O, F, and P nuclei, is used to assess the accuracy of the results in comparison to coupled cluster and empirical equilibrium reference data, as well as to calculations with MP2, Hartree-Fock, and commonly used pure and hybrid density functionals. Investigated are also errors due to basis set incompleteness, the frozen core approximation, different auxiliary basis sets for the RI approximation, and grids used for the chain-of-spheres exchange integral evaluation. The DSD-PBEP86 double-hybrid functional shows the smallest deviations from the reference data with mean absolute relative error in chemical shifts of 1.9%. This is significantly better than MP2 (4.1%), spin-component-scaled MP2 (3.9%), or the best conventional density functional tested, M06L (5.4%). A protocol (basis sets, grid sizes, etc.) for the efficient and accurate calculation of chemical shifts at the DHDFT level is proposed and shown to be routinely applicable to systems of 100-400 electrons, requiring computation times 1-2 orders of magnitude longer than for equivalent calculations with conventional (pure or hybrid) density functionals.
基于原子轨道杂化的规范包含,实现了双杂交密度泛函理论(DHDFT)的核磁共振化学屏蔽张量的解析计算,使用了对于其二阶 Møller-Plesset 微扰理论(MP2)相关贡献的离域积分近似(RI)。使用了包含 H、C、N、O、F 和 P 核的 15 个小分子的基准集,以评估与耦合簇和经验平衡参考数据相比的结果的准确性,以及与 MP2、Hartree-Fock 和常用纯和杂化密度泛函的计算相比的准确性。还研究了由于基组不完备、冻结核近似、RI 近似的不同辅助基组以及用于链球交换积分评估的网格引起的误差。DSD-PBEP86 双杂交泛函与参考数据的偏差最小,化学位移的平均绝对相对误差为 1.9%。这明显优于 MP2(4.1%)、自旋分量缩放的 MP2(3.9%)或测试的最佳传统密度泛函 M06L(5.4%)。提出了一种在 DHDFT 水平上高效准确计算化学位移的方案(基组、网格大小等),并证明其可常规应用于 100-400 电子系统,所需的计算时间比使用传统(纯或杂化)密度泛函进行等效计算长 1-2 个数量级。