Suppr超能文献

重建特定于主体的效应图。

Reconstructing subject-specific effect maps.

机构信息

Computer Vision Lab, ETH Zurich, Zurich, Switzerland.

Department of Computing, Imperial College London, London, United Kingdom.

出版信息

Neuroimage. 2018 Nov 1;181:521-538. doi: 10.1016/j.neuroimage.2018.07.032. Epub 2018 Jul 23.

Abstract

Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be made at two levels: global, i.e. identifiying condition presence for the subject, and local, i.e. detecting condition effect on each individual measurement extracted from the subject's data. While global inference is widely used, local inference, which can be used to form subject-specific effect maps, is rarely used because existing models often yield noisy detections composed of dispersed isolated islands. In this article, we propose a reconstruction method, named RSM, to improve subject-specific detections of predictive modeling approaches and in particular, binary classifiers. RSM specifically aims to reduce noise due to sampling error associated with using a finite sample of examples to train classifiers. The proposed method is a wrapper-type algorithm that can be used with different binary classifiers in a diagnostic manner, i.e. without information on condition presence. Reconstruction is posed as a Maximum-A-Posteriori problem with a prior model whose parameters are estimated from training data in a classifier-specific fashion. Experimental evaluation is performed on synthetically generated data and data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results on synthetic data demonstrate that using RSM yields higher detection accuracy compared to using models directly or with bootstrap averaging. Analyses on the ADNI dataset show that RSM can also improve correlation between subject-specific detections in cortical thickness data and non-imaging markers of Alzheimer's Disease (AD), such as the Mini Mental State Examination Score and Cerebrospinal Fluid amyloid-β levels. Further reliability studies on the longitudinal ADNI dataset show improvement on detection reliability when RSM is used.

摘要

预测模型允许在分析神经影像学数据中与疾病相关的改变时进行特定于主题的推断。给定一个主题的数据,可以在两个层面上进行推断:全局,即识别主题的条件存在,局部,即检测从主题数据中提取的每个个体测量的条件效果。虽然全局推断得到了广泛应用,但局部推断(可用于形成特定于主题的效应图)很少使用,因为现有的模型通常会产生由分散的孤立岛屿组成的嘈杂检测结果。在本文中,我们提出了一种名为 RSM 的重建方法,以改善预测建模方法的特定于主题的检测,特别是二进制分类器。RSM 专门旨在减少由于使用有限数量的示例来训练分类器而导致的采样错误引起的噪声。该方法是一种包装类型的算法,可用于以诊断方式使用不同的二进制分类器,即无需关于条件存在的信息。重建被提出为具有先验模型的最大后验概率问题,其参数是根据训练数据以分类器特定的方式估计的。在合成生成的数据和阿尔茨海默病神经影像学倡议(ADNI)数据库的数据上进行了实验评估。在合成数据上的结果表明,与直接使用模型或使用引导平均相比,使用 RSM 可以提高检测精度。对 ADNI 数据集的分析表明,RSM 还可以提高皮质厚度数据中特定于主题的检测与阿尔茨海默病(AD)的非成像标志物(如 Mini 精神状态检查评分和脑脊液淀粉样蛋白-β水平)之间的相关性。在纵向 ADNI 数据集上进行的进一步可靠性研究表明,使用 RSM 时可以提高检测可靠性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验