Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, United States.
Department of Radiology and Medical Imaging, University of Virginia, United States.
Neuroimage. 2020 Oct 15;220:117129. doi: 10.1016/j.neuroimage.2020.117129. Epub 2020 Jul 5.
While aggregation of neuroimaging datasets from multiple sites and scanners can yield increased statistical power, it also presents challenges due to systematic scanner effects. This unwanted technical variability can introduce noise and bias into estimation of biological variability of interest. We propose a method for harmonizing longitudinal multi-scanner imaging data based on ComBat, a method originally developed for genomics and later adapted to cross-sectional neuroimaging data. Using longitudinal cortical thickness measurements from 663 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, we demonstrate the presence of additive and multiplicative scanner effects in various brain regions. We compare estimates of the association between diagnosis and change in cortical thickness over time using three versions of the ADNI data: unharmonized data, data harmonized using cross-sectional ComBat, and data harmonized using longitudinal ComBat. In simulation studies, we show that longitudinal ComBat is more powerful for detecting longitudinal change than cross-sectional ComBat and controls the type I error rate better than unharmonized data with scanner included as a covariate. The proposed method would be useful for other types of longitudinal data requiring harmonization, such as genomic data, or neuroimaging studies of neurodevelopment, psychiatric disorders, or other neurological diseases.
虽然从多个站点和扫描仪聚合神经影像学数据集可以提高统计能力,但由于系统扫描仪效应,也会带来挑战。这种不想要的技术可变性会给感兴趣的生物变异性的估计带来噪声和偏差。我们提出了一种基于 ComBat 的方法来协调纵向多扫描仪成像数据,ComBat 是一种最初为基因组学开发的方法,后来被改编为横截面神经影像学数据。使用来自阿尔茨海默病神经影像学倡议(ADNI)研究的 663 名参与者的纵向皮质厚度测量值,我们证明了各种大脑区域存在附加和乘法扫描仪效应。我们使用 ADNI 数据的三个版本(未协调数据、使用横截面 ComBat 协调的数据和使用纵向 ComBat 协调的数据)比较了诊断与皮质厚度随时间变化之间关联的估计值。在模拟研究中,我们表明,纵向 ComBat 比横截面 ComBat 更能有效地检测纵向变化,并且与包含扫描仪作为协变量的未协调数据相比,更好地控制了第一类错误率。该方法将对其他需要协调的纵向数据类型(如基因组数据)或神经发育、精神障碍或其他神经疾病的神经影像学研究有用。