Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA, 91125, USA.
Department of Physics, The James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA.
Nat Commun. 2018 Jul 27;9(1):2953. doi: 10.1038/s41467-018-05435-7.
Dimensionality and symmetry play deterministic roles in the laws of Nature. They are important tools to characterize and understand quantum phase transitions, especially in the limit of strong correlations between spin, orbit, charge, and structural degrees of freedom. Here, using newly-developed, high-pressure resonant X-ray magnetic and charge diffraction techniques, we have discovered a quantum critical point in CdOsO as the all-in-all-out antiferromagnetic order is continuously suppressed to zero temperature and, concomitantly, the cubic lattice structure continuously changes from space group Fd-3m to F-43m. Surrounded by three phases of different time reversal and spatial inversion symmetries, the quantum critical region anchors two phase lines of opposite curvature, with striking departures from a mean-field form at high pressure. As spin fluctuations, lattice breathing modes, and quasiparticle excitations interact in the quantum critical region, we argue that they present the necessary components for strongly-coupled quantum criticality in this three-dimensional compound.
维度和对称在自然法则中起着决定性的作用。它们是描述和理解量子相变的重要工具,特别是在自旋、轨道、电荷和结构自由度之间强关联的极限下。在这里,我们使用新开发的高压共振 X 射线磁和电荷衍射技术,在 CdOsO 中发现了一个量子临界点,当全反铁磁有序连续被抑制到零温度时,立方晶格结构连续从空间群 Fd-3m 变为 F-43m。在三个具有不同时间反转和空间反转对称性的相的包围下,量子临界点锚定了两条曲率相反的相线,在高压下与平均场形式有明显偏离。由于自旋涨落、晶格呼吸模式和准粒子激发在量子临界点相互作用,我们认为它们为这个三维化合物中强耦合量子临界点提供了必要的组成部分。