Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 90109, USA.
Front Med. 2018 Aug;12(4):412-425. doi: 10.1007/s11684-018-0650-z. Epub 2018 Jul 27.
Transcription factor networks have evolved in order to control, coordinate, and separate, the functions of distinct network modules spatially and temporally. In this review we focus on the MYC network (also known as the MAX-MLX Network), a highly conserved super-family of related basic-helix-loop-helix-zipper (bHLHZ) proteins that functions to integrate extracellular and intracellular signals and modulate global gene expression. Importantly the MYC network has been shown to be deeply involved in a broad spectrum of human and other animal cancers. Here we summarize molecular and biological properties of the network modules with emphasis on functional interactions among network members. We suggest that these network interactions serve to modulate growth and metabolism at the transcriptional level in order to balance nutrient demand with supply, to maintain growth homeostasis, and to influence cell fate. Moreover, oncogenic activation of MYC and/or loss of a MYC antagonist, results in an imbalance in the activity of the network as a whole, leading to tumor initiation, progression and maintenance.
转录因子网络的进化是为了在空间和时间上控制、协调和分离不同网络模块的功能。在这篇综述中,我们专注于 MYC 网络(也称为 MAX-MLX 网络),这是一个高度保守的相关基本螺旋-环-螺旋-拉链(bHLHZ)蛋白超家族,其功能是整合细胞外和细胞内信号,并调节全局基因表达。重要的是,MYC 网络已被证明与广泛的人类和其他动物癌症密切相关。在这里,我们总结了网络模块的分子和生物学特性,重点是网络成员之间的功能相互作用。我们认为,这些网络相互作用有助于在转录水平上调节生长和代谢,以平衡营养需求与供应,维持生长平衡,并影响细胞命运。此外,MYC 的致癌激活和/或 MYC 拮抗剂的缺失,导致整个网络的活性失衡,导致肿瘤的起始、进展和维持。