Marine and Environmental Sciences Centre (MARE), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisboa, Portugal; Instituto do Mar e da Atmosfera (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006, Algés, Portugal.
Mar Environ Res. 2018 Sep;140:412-421. doi: 10.1016/j.marenvres.2018.07.014. Epub 2018 Jul 21.
Mercury naturally contaminated environments, like Deception Island (Antarctica), are field labs to study the physiological consequences of chronic Hg-exposure at the community level. Deception Island volcanic vents lead to a continuous chronic exposure of the phytoplanktonic communities to potentially toxic Hg concentrations. Comparing Hg-contaminated areas (Fumarolas Bay - FB, Gabriel de Castilla station - GdC station), no significant differences in chlorophyll a concentrations were detected, indicating that biomass production was not impaired by Hg-exposure despite the high Hg levels found in the cells. Moreover, the electron transport energy, responsible for energy production, also presented rather similar values in phytoplankton from both locations. Regarding FB communities, although the cells absorbed and trapped lower amounts of energy, the effect of Hg was not relevant in the photochemical work produced by the electronic transport chain. This might be due to the activation of alternative internal electron donors, as counteractive measure to the energy accumulated inside the cells. In fact, this alternative electron pathway, may have allowed FB communities to have similar electron transport energy fluxes without using respiration as photoprotective measure towards excessive energy. Hg-exposed cells also showed a shift from the energy flux towards the PS I (photosystem I), alleviating the excessive energy accumulation at the PS II (photosystem II) and preventing an oxidative burst. Our findings suggest a higher energy use efficiency in the communities exposed to volcanic Hg, which is not observable in cultured phytoplankton species grown under Hg exposure. This may constitute a metabolic adaptation, driven from chronic exposure allowing the maintenance of high levels of primary productivity under the assumingly unfavourable conditions of Deception Island.
受汞污染的自然环境,如欺骗岛(南极洲),是研究群落水平下慢性汞暴露对生理影响的现场实验室。欺骗岛火山喷口导致浮游植物群落持续受到潜在有毒汞浓度的慢性暴露。比较受汞污染的区域(Fumarolas 湾-FB、Gabriel de Castilla 站-GdC 站),未发现叶绿素 a 浓度存在显著差异,表明尽管细胞内发现了高浓度的汞,但生物量的产生并未受到汞暴露的损害。此外,负责能量产生的电子传递能量在两个地点的浮游植物中也呈现出相当相似的数值。关于 FB 群落,尽管细胞吸收和捕获的能量较少,但汞的影响在电子传递链产生的光化学工作中并不重要。这可能是由于激活了替代的内部电子供体,作为对细胞内积累的能量的抵消措施。事实上,这种替代的电子途径可能使 FB 群落能够在不使用呼吸作为防止过度能量的光保护措施的情况下,具有相似的电子传递能量通量。暴露于汞的细胞还显示出能量通量向 PS I(光系统 I)的转移,减轻了 PS II(光系统 II)中过度的能量积累,并防止了氧化爆发。我们的研究结果表明,暴露于火山汞的群落具有更高的能量利用效率,而在暴露于汞的培养浮游植物物种中观察不到这种效率。这可能是一种代谢适应,由于慢性暴露,在欺骗岛的不利条件下,仍能维持高水平的初级生产力。