Duarte Bernardo, Feijão Eduardo, Cruz de Carvalho Ricardo, Duarte Irina A, Silva Marisa, Matos Ana Rita, Cabrita Maria Teresa, Novais Sara C, Lemos Marco F L, Marques João Carlos, Caçador Isabel, Reis-Santos Patrick, Fonseca Vanessa F
MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.
Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.
Biology (Basel). 2020 Dec 18;9(12):478. doi: 10.3390/biology9120478.
Present demographic trends suggest a rise in the contributions of human pharmaceuticals into coastal ecosystems, underpinning an increasing demand to evaluate the ecotoxicological effects and implications of drug residues in marine risk assessments. Propranolol, a non-selective β-adrenoceptor blocker, is used worldwide to treat high blood pressure conditions and other related cardiovascular conditions. Although diatoms lack β-adrenoceptors, this microalgal group presents receptor-like kinases and proteins with a functional analogy to the animal receptors and that can be targeted by propranolol. In the present work, the authors evaluated the effect of this non-selective β-adrenoceptor blocker in diatom cells using as a model organism, to evaluate the potential effect of this compound in cell physiology (growth, lipids and energy metabolism and oxidative stress) and its potential relevance for marine ecosystems. Propranolol exposure leads to a significant reduction in diatom cell growth, more evident in the highest concentrations tested. This is likely due to the observed impairment of the main primary photochemistry processes and the enhancement of the mitochondrial respiratory activity. More specifically, propranolol decreased the energy transduction from photosystem II (PSII) to the electron transport chain, leading to an increase in oxidative stress levels. Cells exposed to propranolol also exhibited high-dissipated energy flux, indicating that this excessive energy is efficiently diverted, to some extent, from the photosystems, acting to prevent irreversible photoinhibition. As energy production is impaired at the PSII donor side, preventing energy production through the electron transport chain, diatoms appear to be consuming storage lipids as an energy backup system, to maintain essential cellular functions. This consumption will be attained by an increase in respiratory activity. Considering the primary oxygen production and consumption pathways, propranolol showed a significant reduction of the autotrophic O production and an increase in the heterotrophic mitochondrial respiration. Both mechanisms can have negative effects on marine trophic webs, due to a decrease in the energetic input from marine primary producers and a simultaneous oxygen production decrease for heterotrophic species. In ecotoxicological terms, bio-optical and fatty acid data appear as highly efficient tools for ecotoxicity assessment, with an overall high degree of classification when these traits are used to build a toxicological profile, instead of individually assessed.
目前的人口趋势表明,人类药物对沿海生态系统的贡献在增加,这使得在海洋风险评估中评估药物残留的生态毒理学效应及其影响的需求日益增长。普萘洛尔是一种非选择性β-肾上腺素能受体阻滞剂,在全球范围内用于治疗高血压和其他相关心血管疾病。尽管硅藻缺乏β-肾上腺素能受体,但这类微藻具有与动物受体功能类似的受体样激酶和蛋白质,普萘洛尔可以作用于这些受体。在本研究中,作者以硅藻细胞作为模式生物,评估了这种非选择性β-肾上腺素能受体阻滞剂的作用,以评估该化合物在细胞生理学(生长、脂质和能量代谢以及氧化应激)方面的潜在影响及其对海洋生态系统的潜在相关性。暴露于普萘洛尔会导致硅藻细胞生长显著减少,在测试的最高浓度下更为明显。这可能是由于观察到的主要初级光化学过程受损以及线粒体呼吸活性增强。更具体地说,普萘洛尔降低了从光系统II(PSII)到电子传递链的能量转换,导致氧化应激水平升高。暴露于普萘洛尔的细胞还表现出高耗散能量通量,这表明这种过量的能量在一定程度上有效地从光系统中转移出来,起到防止不可逆光抑制的作用。由于PSII供体侧的能量产生受损,阻止了通过电子传递链产生能量,硅藻似乎在消耗储存脂质作为能量备用系统,以维持基本的细胞功能。这种消耗将通过呼吸活性的增加来实现。考虑到主要的氧气产生和消耗途径,普萘洛尔显示出自养性氧气产生显著减少,异养性线粒体呼吸增加。由于海洋初级生产者的能量输入减少以及异养物种的氧气产生同时减少,这两种机制都可能对海洋营养网产生负面影响。从生态毒理学角度来看,生物光学和脂肪酸数据似乎是生态毒性评估的高效工具,当利用这些特征构建毒理学概况而不是单独评估时,总体分类程度较高。