Suppr超能文献

使用联合 Scheimpflug 和频域 OCT 分析区分高度非对称圆锥角膜眼。

Distinguishing Highly Asymmetric Keratoconus Eyes Using Combined Scheimpflug and Spectral-Domain OCT Analysis.

机构信息

Keck School of Medicine of the University of Southern California, Los Angeles, California.

USC Roski Eye Institute, Los Angeles, California.

出版信息

Ophthalmology. 2018 Dec;125(12):1862-1871. doi: 10.1016/j.ophtha.2018.06.020. Epub 2018 Jul 25.

Abstract

PURPOSE

To determine optimal objective, machine-derived variables and variable combinations from Scheimpflug and spectral-domain (SD) OCT imaging to distinguish the clinically unaffected eye in patients with asymmetric keratoconus (AKC) from a normal control population.

DESIGN

Retrospective case-control study.

PARTICIPANTS

Thirty clinically unaffected eyes with no physical findings on slit-lamp examination, no definitive abnormalities on corneal imaging, and corrected distance acuity of 20/20 or better from 30 patients with highly AKC eyes and 60 eyes from 60 normal control patients who had undergone uneventful LASIK with at least 2 years of stable follow-up (controls).

METHODS

Scheimpflug and SD OCT imaging were obtained in all eyes, and receiver operating characteristic (ROC) curves were generated to determine area under the curve (AUC), sensitivity, and specificity for each machine-derived variable and variable combination.

MAIN OUTCOME MEASURES

Distinguishing AKC eyes from controls as determined by AUC, sensitivity, and specificity.

RESULTS

No individual machine-derived metric from Scheimpflug or SD OCT technology yielded an AUC higher than 0.75. Combining 5 Scheimpflug metrics (index height decentration [IHD], index vertical asymmetry [IVA], pachymetry apex, inferior-superior value, and Ambrosio's Relational Thickness Maximum [ARTmax]) yielded the best Scheimpflug results (AUC 0.86, sensitivity 83%, specificity 83%). Combining 11 SD OCT thickness metrics (minimum-median, temporal outer, superior nasal outer, minimum, epithelium minimum-maximum, epithelial standard deviation, superior inner, superior outer, superior temporal outer, superior nasal inner, central) yielded the best SD OCT results (AUC 0.96, sensitivity 89%, specificity 89%). Combining 13 total Scheimpflug/SD OCT metrics yielded the best results overall (AUC 1.0, sensitivity 100%, specificity 100%). The most impactful variables in combined models included epithelial thickness variability and total focal corneal thickness variability from SD OCT and anterior curvature and topometric indices from Scheimpflug technology. No posterior corneal metrics were impactful in modeling.

CONCLUSIONS

Individual machine-derived metrics from Scheimpflug and SD OCT imaging poorly distinguished normal eyes from minimally affected eyes from patients with highly AKC. Combined SD OCT metrics performed better than combined Scheimpflug metrics. Combining anterior curvature and asymmetry indices from Scheimpflug with regional total thickness and epithelial thickness variability metrics from SD OCT clearly distinguished the 2 populations. Posterior corneal indices were not useful in distinguishing populations.

摘要

目的

确定 Scheimpflug 和光谱域(SD)OCT 成像的最佳客观、机器衍生变量和变量组合,以区分不对称性圆锥角膜(AKC)患者中临床未受影响的眼睛与正常对照组。

设计

回顾性病例对照研究。

参与者

30 只临床未受影响的眼睛,在裂隙灯检查中无物理发现,角膜成像无明确异常,且 30 例高度 AKC 患者中有 30 只眼睛的矫正远视力为 20/20 或更好,60 只眼睛来自 60 例正常对照组患者,这些患者接受了无并发症的 LASIK 手术,至少有 2 年稳定的随访(对照组)。

方法

对所有眼睛进行 Scheimpflug 和 SD OCT 成像,并生成接收器操作特性(ROC)曲线,以确定每个机器衍生变量和变量组合的曲线下面积(AUC)、灵敏度和特异性。

主要观察指标

AUC、灵敏度和特异性确定 AKC 眼与对照组的区别。

结果

Scheimpflug 或 SD OCT 技术的任何单个机器衍生指标的 AUC 均未超过 0.75。结合 5 个 Scheimpflug 指标(指数高度偏心 [IHD]、指数垂直不对称 [IVA]、角膜厚度顶点、下-上值和 Ambrosio 的最大相对厚度 [ARTmax])可获得最佳的 Scheimpflug 结果(AUC 0.86,灵敏度 83%,特异性 83%)。结合 11 个 SD OCT 厚度指标(最小-中位数、颞侧外、上鼻外侧、最小、上皮最小-最大、上皮标准差、上内、上外、上颞外、上鼻内、中央)可获得最佳的 SD OCT 结果(AUC 0.96,灵敏度 89%,特异性 89%)。结合 13 个 Scheimpflug/SD OCT 总指标可获得最佳的总体结果(AUC 1.0,灵敏度 100%,特异性 100%)。组合模型中最具影响力的变量包括来自 SD OCT 的上皮厚度变异性和总焦点角膜厚度变异性,以及来自 Scheimpflug 技术的前曲率和拓扑指数。在建模中,没有后部角膜指标具有影响力。

结论

Scheimpflug 和 SD OCT 成像的单个机器衍生指标很难区分正常眼睛和轻度受影响的眼睛与高度 AKC 患者。SD OCT 指标的组合优于 Scheimpflug 指标的组合。结合 Scheimpflug 的前曲率和不对称指数与 SD OCT 的区域性总厚度和上皮厚度变异性指标可清楚地区分这两个群体。后部角膜指数在区分人群方面没有用处。

相似文献

引用本文的文献

4
Advances in machine learning for keratoconus diagnosis.圆锥角膜诊断中机器学习的进展。
Int Ophthalmol. 2025 Mar 30;45(1):128. doi: 10.1007/s10792-025-03496-4.
6
Tomographic characteristics of thick corneas.厚角膜的断层扫描特征。
BMC Ophthalmol. 2025 Feb 10;25(1):69. doi: 10.1186/s12886-025-03905-3.
9
The role of corneal epithelial thickness map in detecting early keratoconus.角膜上皮厚度图在早期圆锥角膜检测中的作用。
Graefes Arch Clin Exp Ophthalmol. 2025 Apr;263(4):1035-1044. doi: 10.1007/s00417-024-06682-9. Epub 2024 Nov 13.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验