Gerber Brian D, Hooten Mevin B, Peck Christopher P, Rice Mindy B, Gammonley James H, Apa Anthony D, Davis Amy J
1Colorado Cooperative Fish and Wildlife Research Unit, Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, 80523 CO USA.
2Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, 02881-2018 RI USA.
Mov Ecol. 2018 Jul 25;6:14. doi: 10.1186/s40462-018-0129-1. eCollection 2018.
Characterizing animal space use is critical for understanding ecological relationships. Animal telemetry technology has revolutionized the fields of ecology and conservation biology by providing high quality spatial data on animal movement. Radio-telemetry with very high frequency (VHF) radio signals continues to be a useful technology because of its low cost, miniaturization, and low battery requirements. Despite a number of statistical developments synthetically integrating animal location estimation and uncertainty with spatial process models using satellite telemetry data, we are unaware of similar developments for azimuthal telemetry data. As such, there are few statistical options to handle these unique data and no synthetic framework for modeling animal location uncertainty and accounting for it in ecological models.We developed a hierarchical modeling framework to provide robust animal location estimates from one or more intersecting or non-intersecting azimuths. We used our azimuthal telemetry model (ATM) to account for azimuthal uncertainty with covariates and propagate location uncertainty into spatial ecological models. We evaluate the ATM with commonly used estimators (Lenth (1981) maximum likelihood and M-Estimators) using simulation. We also provide illustrative empirical examples, demonstrating the impact of ignoring location uncertainty within home range and resource selection analyses. We further use simulation to better understand the relationship among location uncertainty, spatial covariate autocorrelation, and resource selection inference.
We found the ATM to have good performance in estimating locations and the only model that has appropriate measures of coverage. Ignoring animal location uncertainty when estimating resource selection or home ranges can have pernicious effects on ecological inference. Home range estimates can be overly confident and conservative when ignoring location uncertainty and resource selection coefficients can lead to incorrect inference and over confidence in the magnitude of selection. Furthermore, our simulation study clarified that incorporating location uncertainty helps reduce bias in resource selection coefficients across all levels of covariate spatial autocorrelation.
The ATM can accommodate one or more azimuths when estimating animal locations, regardless of how they intersect; this ensures that all data collected are used for ecological inference. Our findings and model development have important implications for interpreting historical analyses using this type of data and the future design of radio-telemetry studies.
了解动物的空间利用情况对于理解生态关系至关重要。动物遥测技术通过提供有关动物移动的高质量空间数据,彻底改变了生态学和保护生物学领域。使用甚高频(VHF)无线电信号的无线电遥测技术,因其成本低、小型化和低电池要求,仍然是一项有用的技术。尽管在利用卫星遥测数据将动物位置估计和不确定性与空间过程模型进行综合整合方面有许多统计进展,但我们并未发现针对方位遥测数据的类似进展。因此,处理这些独特数据的统计方法很少,并且没有用于对动物位置不确定性进行建模并在生态模型中加以考虑的综合框架。我们开发了一个层次建模框架,以便从一个或多个相交或不相交的方位提供可靠的动物位置估计。我们使用方位遥测模型(ATM)来考虑协变量引起的方位不确定性,并将位置不确定性传播到空间生态模型中。我们使用模拟方法,用常用估计器(Lenth(1981)最大似然估计和M估计器)对方位遥测模型进行评估。我们还提供了说明性的实证例子,展示了在活动范围和资源选择分析中忽略位置不确定性的影响。我们进一步使用模拟来更好地理解位置不确定性、空间协变量自相关和资源选择推断之间的关系。
我们发现方位遥测模型在估计位置方面表现良好,并且是唯一具有适当覆盖度量的模型。在估计资源选择或活动范围时忽略动物位置不确定性,可能会对生态推断产生有害影响。忽略位置不确定性时,活动范围估计可能会过于自信和保守,而资源选择系数可能会导致错误的推断以及对选择幅度的过度自信。此外,我们的模拟研究表明,纳入位置不确定性有助于减少所有协变量空间自相关水平下资源选择系数的偏差。
方位遥测模型在估计动物位置时可以容纳一个或多个方位,无论它们如何相交;这确保了收集到的所有数据都用于生态推断。我们的研究结果和模型开发对于解释使用此类数据的历史分析以及未来无线电遥测研究设计具有重要意义。