Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
J Neuroeng Rehabil. 2018 Jul 31;15(1):70. doi: 10.1186/s12984-018-0417-4.
The loss of an arm presents a substantial challenge for upper limb amputees when performing activities of daily living. Myoelectric prosthetic devices partially replace lost hand functions; however, lack of sensory feedback and strong understanding of the myoelectric control system prevent prosthesis users from interacting with their environment effectively. Although most research in augmented sensory feedback has focused on real-time regulation, sensory feedback is also essential for enabling the development and correction of internal models, which in turn are used for planning movements and reacting to control variability faster than otherwise possible in the presence of sensory delays.
Our recent work has demonstrated that audio-augmented feedback can improve both performance and internal model strength for an abstract target acquisition task. Here we use this concept in controlling a robotic hand, which has inherent dynamics and variability, and apply it to a more functional grasp-and-lift task. We assessed internal model strength using psychophysical tests and used an instrumented Virtual Egg to assess performance.
Results obtained from 14 able-bodied subjects show that a classifier-based controller augmented with audio feedback enabled stronger internal model (p = 0.018) and better performance (p = 0.028) than a controller without this feedback.
We extended our previous work and accomplished the first steps on a path towards bridging the gap between research and clinical usability of a hand prosthesis. The main goal was to assess whether the ability to decouple internal model strength and motion variability using the continuous audio-augmented feedback extended to real-world use, where the inherent mechanical variability and dynamics in the mechanisms may contribute to a more complicated interplay between internal model formation and motion variability. We concluded that benefits of using audio-augmented feedback for improving internal model strength of myoelectric controllers extend beyond a virtual target acquisition task to include control of a prosthetic hand.
对于上肢截肢者来说,日常生活活动中失去手臂会带来很大的挑战。肌电假肢部分替代了失去的手部功能;然而,缺乏感觉反馈和对肌电控制系统的深入理解,阻止了假肢使用者有效地与环境进行交互。尽管大多数增强感觉反馈的研究都集中在实时调节上,但感觉反馈对于建立和纠正内部模型也是必不可少的,而内部模型反过来又用于规划运动,并在存在感觉延迟的情况下更快地对控制变化做出反应。
我们最近的工作表明,音频增强反馈可以提高抽象目标获取任务的性能和内部模型强度。在这里,我们将这个概念应用于控制具有固有动力学和可变性的机器人手,并将其应用于更具功能性的抓握和提升任务。我们使用心理物理测试来评估内部模型强度,并使用仪器化的虚拟鸡蛋来评估性能。
从 14 名健康受试者中获得的结果表明,基于分类器的控制器通过添加音频反馈,可以增强内部模型(p=0.018)和提高性能(p=0.028),而不使用此反馈的控制器则无法实现。
我们扩展了以前的工作,并在缩小手部假肢研究和临床可用性之间的差距方面迈出了第一步。主要目标是评估使用连续音频增强反馈来分离内部模型强度和运动可变性的能力是否扩展到现实世界的使用中,其中机构中的固有机械可变性和动力学可能会导致内部模型形成和运动可变性之间更复杂的相互作用。我们得出的结论是,使用音频增强反馈来提高肌电控制器的内部模型强度的好处不仅限于虚拟目标获取任务,还包括对假肢手的控制。