Kiss Alexa, Fischer Irmgard, Kleele Tatjana, Misgeld Thomas, Propst Friedrich
Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria.
Institute of Neuronal Cell Biology, Technical University of Munich, Munich Cluster for Systems Neurology (SyNergy) and German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
Front Cell Neurosci. 2018 Jul 17;12:195. doi: 10.3389/fncel.2018.00195. eCollection 2018.
Migration and pathfinding of neuronal growth cones during neurite extension is critically dependent on dynamic microtubules. In this study we sought to determine, which aspects of microtubule polymerization relate to growth cone morphology and migratory characteristics. We conducted a multiscale quantitative microscopy analysis using automated tracking of microtubule plus ends in migrating growth cones of cultured murine dorsal root ganglion (DRG) neurons. Notably, this comprehensive analysis failed to identify any changes in microtubule polymerization parameters that were specifically associated with spontaneous extension vs. retraction of growth cones. This suggests that microtubule dynamicity is a basic mechanism that does not determine the polarity of growth cone response but can be exploited to accommodate diverse growth cone behaviors. At the same time, we found a correlation between growth cone size and basic parameters of microtubule polymerization including the density of growing microtubule plus ends and rate and duration of microtubule growth. A similar correlation was observed in growth cones of neurons lacking the microtubule-associated protein MAP1B. However, MAP1B-null growth cones, which are deficient in growth cone migration and steering, displayed an overall reduction in microtubule dynamicity. Our results highlight the importance of taking growth cone size into account when evaluating the influence on growth cone microtubule dynamics of different substrata, guidance factors or genetic manipulations which all can change growth cone morphology and size. The type of large scale multiparametric analysis performed here can help to separate direct effects that these perturbations might have on microtubule dynamics from indirect effects resulting from perturbation-induced changes in growth cone size.
在神经突延伸过程中,神经元生长锥的迁移和路径寻找严重依赖于动态微管。在本研究中,我们试图确定微管聚合的哪些方面与生长锥形态和迁移特性相关。我们使用自动跟踪培养的小鼠背根神经节(DRG)神经元迁移生长锥中的微管正端,进行了多尺度定量显微镜分析。值得注意的是,这种全面分析未能识别出与生长锥自发延伸与回缩特别相关的微管聚合参数的任何变化。这表明微管动态性是一种基本机制,它并不决定生长锥反应的极性,但可被利用来适应多种生长锥行为。同时,我们发现生长锥大小与微管聚合的基本参数之间存在相关性,这些参数包括生长中的微管正端密度、微管生长速率和持续时间。在缺乏微管相关蛋白MAP1B的神经元的生长锥中也观察到了类似的相关性。然而,缺乏生长锥迁移和转向能力的MAP1B基因敲除生长锥,其微管动态性总体上有所降低。我们的结果强调了在评估不同基质、导向因子或基因操作对生长锥微管动态性的影响时考虑生长锥大小的重要性,因为所有这些因素都可能改变生长锥形态和大小。此处进行的大规模多参数分析类型有助于将这些扰动可能对微管动态性产生的直接影响与由扰动引起的生长锥大小变化所产生的间接影响区分开来。