Suppr超能文献

机器学习在神经科中的应用:神经科医生可以从机器中学到什么,反之亦然。

Machine learning in neurology: what neurologists can learn from machines and vice versa.

机构信息

Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.

Neurology Department, University Hospitals Leuven, Leuven, Belgium.

出版信息

J Neurol. 2018 Nov;265(11):2745-2748. doi: 10.1007/s00415-018-8990-9. Epub 2018 Aug 2.

Abstract

Artificial intelligence is increasingly becoming a part of everyday life. This raises the question whether clinical neurology can benefit from these novel methods to increase diagnostic accuracy. Several recent studies have used machine learning classifiers to predict whether subjects suffer from a neurological disorder. This article discusses whether these methods are ready to make their entrance into clinical practice. The underlying principles of classification will be explored, as well as the potential pitfalls. Strengths of machine learning methods are that they are unbiased and very sensitive to patterns emerging from small changes spread across a large number of variables. Potential pitfalls are that building reliable classifiers requires large amounts of well-selected data and extensive validation. Currently, machine learning classifiers offer neurologists a new diagnostic tool which can aid in the diagnosis of cases with a high degree of uncertainty.

摘要

人工智能日益成为日常生活的一部分。这就提出了一个问题,即临床神经病学是否可以受益于这些新方法来提高诊断准确性。最近有几项研究使用机器学习分类器来预测受试者是否患有神经障碍。本文讨论了这些方法是否准备好进入临床实践。本文将探讨分类的基本原理以及潜在的陷阱。机器学习方法的优势在于它们是无偏的,并且对从小数量的变量中出现的小变化模式非常敏感。潜在的陷阱是,构建可靠的分类器需要大量经过精心挑选的数据和广泛的验证。目前,机器学习分类器为神经科医生提供了一种新的诊断工具,可以帮助诊断高度不确定的病例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验