Suppr超能文献

分层谱聚类揭示了……无症状携带者的脑大小和形状变化。 (原文中“of”后面缺少具体内容)

Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of .

作者信息

Bruffaerts Rose, Gors Dorothy, Bárcenas Gallardo Alicia, Vandenbulcke Mathieu, Van Damme Philip, Suetens Paul, van Swieten John C, Borroni Barbara, Sanchez-Valle Raquel, Moreno Fermin, Laforce Robert, Graff Caroline, Synofzik Matthis, Galimberti Daniela, Rowe James B, Masellis Mario, Tartaglia Maria Carmela, Finger Elizabeth, de Mendonça Alexandre, Tagliavini Fabrizio, Butler Chris R, Santana Isabel, Gerhard Alexander, Ducharme Simon, Levin Johannes, Danek Adrian, Otto Markus, Rohrer Jonathan D, Dupont Patrick, Claes Peter, Vandenberghe Rik

机构信息

Laboratory for Cognitive Neurology, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium.

Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven 3000, Belgium.

出版信息

Brain Commun. 2022 Jul 18;4(4):fcac182. doi: 10.1093/braincomms/fcac182. eCollection 2022.

Abstract

Traditional methods for detecting asymptomatic brain changes in neurodegenerative diseases such as Alzheimer's disease or frontotemporal degeneration typically evaluate changes in volume at a predefined level of granularity, e.g. voxel-wise or in a priori defined cortical volumes of interest. Here, we apply a method based on hierarchical spectral clustering, a graph-based partitioning technique. Our method uses multiple levels of segmentation for detecting changes in a data-driven, unbiased, comprehensive manner within a standard statistical framework. Furthermore, spectral clustering allows for detection of changes in shape along with changes in size. We performed tensor-based morphometry to detect changes in the Genetic Frontotemporal dementia Initiative asymptomatic and symptomatic frontotemporal degeneration mutation carriers using hierarchical spectral clustering and compared the outcome to that obtained with a more conventional voxel-wise tensor- and voxel-based morphometric analysis. In the symptomatic groups, the hierarchical spectral clustering-based method yielded results that were largely in line with those obtained with the voxel-wise approach. In asymptomatic expansion carriers, spectral clustering detected changes in size in medial temporal cortex that voxel-wise methods could only detect in the symptomatic phase. Furthermore, in the asymptomatic and the symptomatic phases, the spectral clustering approach detected changes in shape in the premotor cortex in . In summary, the present study shows the merit of hierarchical spectral clustering for data-driven segmentation and detection of structural changes in the symptomatic and asymptomatic stages of monogenic frontotemporal degeneration.

摘要

用于检测神经退行性疾病(如阿尔茨海默病或额颞叶变性)中无症状脑变化的传统方法通常在预定义的粒度水平上评估体积变化,例如体素级或在先验定义的感兴趣皮质体积内。在此,我们应用一种基于层次谱聚类的方法,这是一种基于图的划分技术。我们的方法使用多个分割级别,以便在标准统计框架内以数据驱动、无偏且全面的方式检测变化。此外,谱聚类允许在检测大小变化的同时检测形状变化。我们使用层次谱聚类进行基于张量的形态测量,以检测遗传额颞叶痴呆倡议无症状和有症状的额颞叶变性突变携带者的变化,并将结果与通过更传统的基于体素的张量和基于体素的形态测量分析获得的结果进行比较。在有症状的组中,基于层次谱聚类的方法产生的结果与基于体素的方法获得的结果基本一致。在无症状扩展携带者中,谱聚类检测到内侧颞叶皮质的大小变化,而基于体素的方法只能在有症状阶段检测到这种变化。此外,在无症状和有症状阶段,谱聚类方法在运动前皮质中检测到形状变化。总之,本研究显示了层次谱聚类在数据驱动分割以及检测单基因额颞叶变性有症状和无症状阶段结构变化方面的优点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d8/9311825/aac593bafa12/fcac182ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验