Suppr超能文献

自噬起始时 ATG101 的 C 端区域连接 ULK1 和 PtdIns3K 复合物。

The C-terminal region of ATG101 bridges ULK1 and PtdIns3K complex in autophagy initiation.

机构信息

a Department of Life Sciences , Korea University , Seongbuk-gu, Seoul , Republic of Korea.

b Department of Cancer Biomedical Science , National Cancer Center Graduate School of Cancer Science and Policy , Seongbuk-gu, Seoul , Republic of Korea.

出版信息

Autophagy. 2018;14(12):2104-2116. doi: 10.1080/15548627.2018.1504716. Epub 2018 Aug 16.

Abstract

The initiation of macroautophagy/autophagy is tightly regulated by the upstream ULK1 kinase complex, which affects many downstream factors including the PtdIns3K complex. The phosphorylation of the right position at the right time on downstream molecules is governed by proper complex formation. One component of the ULK1 complex, ATG101, known as an accessory protein, is a stabilizer of ATG13 in cells. The WF finger region of ATG101 plays an important role in the recruitment of WIPI1 (WD repeat domain, phosphoinositide interacting protein 1) and ZFYVE1 (zinc finger FYVE-type containing 1). Here, we report that the C-terminal region identified in the structure of the human ATG101-ATG13 complex is responsible for the binding of the PtdIns3K complex. This region adopts a β-strand conformation in free ATG101, but either an α-helix or random coil in our ATG101-ATG13 complex, which protrudes from the core and interacts with other molecules. The C-terminal deletion of ATG101 shows a significant defect in the interaction with PtdIns3K components and subsequently impairs autophagosome formation. This result clearly presents an additional role of ATG101 for bridging the ULK1 and PtdIns3K complexes in the mammalian autophagy process. Abbreviations: ATG: autophagy related; BECN1: beclin 1; GFP: green fluorescent protein; HORMA: Hop1p/Rev7p/MAD2; HsATG13: HORMA domain of ATG13 from Homo sapiens; KO: knockout; MAD2: mitotic arrest deficient 2 like 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15: phosphoinositide-3-kinase regulatory subunit 4; PtdIns3K: phosphatidylinositol 3-kinase; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SAXS: small-angle X-ray scattering; ScAtg13: HORMA domain of Atg13 from Sccharomyces cerevisiae; SEC-SAXS: size-exclusion chromatography with small-angle X-ray scattering; SpAtg13: HORMA domain of Atg13 from Schizosaccharomyces pombe; SQSTM1/p62: sequestosome 1; ULK1: unc51-like autophagy activating kinase 1; UVRAG: UV radiation resistance associated; WIPI1: WD repeat domain: phosphoinositide interacting 1; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.

摘要

自噬的起始受到上游 ULK1 激酶复合物的严格调控,该复合物影响许多下游因子,包括 PtdIns3K 复合物。下游分子在适当的复合物形成条件下,在正确的位置和时间进行磷酸化。ULK1 复合物的一个组成部分 ATG101 作为一种辅助蛋白,是细胞中 ATG13 的稳定剂。ATG101 的 WF 指区域在招募 WIPI1(WD 重复域,磷酸肌醇相互作用蛋白 1)和 ZFYVE1(锌指 FYVE 型包含 1)中发挥重要作用。在这里,我们报告说,在人 ATG101-ATG13 复合物结构中鉴定的 C 末端区域负责与 PtdIns3K 复合物结合。在游离 ATG101 中,该区域采用β-链构象,但在我们的 ATG101-ATG13 复合物中采用α-螺旋或无规卷曲构象,从核心突出并与其他分子相互作用。ATG101 的 C 末端缺失显示与 PtdIns3K 成分的相互作用存在显著缺陷,随后会损害自噬体的形成。该结果清楚地呈现了 ATG101 在哺乳动物自噬过程中桥接 ULK1 和 PtdIns3K 复合物的另一个作用。缩写:ATG:自噬相关;BECN1:beclin 1;GFP:绿色荧光蛋白;HORMA:Hop1p/Rev7p/MAD2;HsATG13:来自人类的 ATG13 的 HORMA 结构域;KO:敲除;MAD2:有丝分裂阻滞缺陷 2 样 1;MAP1LC3/LC3:微管相关蛋白 1 轻链 3;PIK3C3/VPS34:磷脂酰肌醇 3-激酶催化亚基 3;PIK3R4/VPS15:磷酸肌醇-3-激酶调节亚基 4;PtdIns3K:磷脂酰肌醇 3-激酶;RB1CC1/FIP200:RB1 诱导卷曲螺旋 1;SAXS:小角 X 射线散射;ScAtg13:酿酒酵母的 Atg13 的 HORMA 结构域;SEC-SAXS:尺寸排阻与小角 X 射线散射;SpAtg13:裂殖酵母的 Atg13 的 HORMA 结构域;SQSTM1/p62:自噬相关蛋白 1;ULK1:UNC51 样自噬激活激酶 1;UVRAG:紫外线辐射抗性相关;WIPI1:WD 重复域:磷酸肌醇相互作用蛋白 1;ZFYVE1/DFCP1:锌指 FYVE 型包含 1。

相似文献

1
The C-terminal region of ATG101 bridges ULK1 and PtdIns3K complex in autophagy initiation.
Autophagy. 2018;14(12):2104-2116. doi: 10.1080/15548627.2018.1504716. Epub 2018 Aug 16.
2
GABARAPs and LC3s have opposite roles in regulating ULK1 for autophagy induction.
Autophagy. 2020 Apr;16(4):600-614. doi: 10.1080/15548627.2019.1632620. Epub 2019 Jun 28.
3
Structure of the Human Atg13-Atg101 HORMA Heterodimer: an Interaction Hub within the ULK1 Complex.
Structure. 2015 Oct 6;23(10):1848-1857. doi: 10.1016/j.str.2015.07.011. Epub 2015 Aug 20.
4
Poliovirus induces autophagic signaling independent of the ULK1 complex.
Autophagy. 2018;14(7):1201-1213. doi: 10.1080/15548627.2018.1458805. Epub 2018 Jul 20.
5
Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL1 via LIR motifs.
Autophagy. 2019 Aug;15(8):1333-1355. doi: 10.1080/15548627.2019.1581009. Epub 2019 Mar 4.
6
STYK1 promotes autophagy through enhancing the assembly of autophagy-specific class III phosphatidylinositol 3-kinase complex I.
Autophagy. 2020 Oct;16(10):1786-1806. doi: 10.1080/15548627.2019.1687212. Epub 2019 Nov 7.
7
How autophagy controls the intestinal epithelial barrier.
Autophagy. 2022 Jan;18(1):86-103. doi: 10.1080/15548627.2021.1909406. Epub 2021 Apr 27.
8
LUBAC and OTULIN regulate autophagy initiation and maturation by mediating the linear ubiquitination and the stabilization of ATG13.
Autophagy. 2021 Jul;17(7):1684-1699. doi: 10.1080/15548627.2020.1781393. Epub 2020 Jun 26.
9
ULK complex organization in autophagy by a C-shaped FIP200 N-terminal domain dimer.
J Cell Biol. 2020 Jul 6;219(7). doi: 10.1083/jcb.201911047.

引用本文的文献

1
TRIM22 functions as a scaffold protein for autophagy initiation.
Anim Cells Syst (Seoul). 2025 May 6;29(1):296-311. doi: 10.1080/19768354.2025.2498926. eCollection 2025.
2
Chondrocyte autophagy mechanism and therapeutic prospects in osteoarthritis.
Front Cell Dev Biol. 2024 Oct 23;12:1472613. doi: 10.3389/fcell.2024.1472613. eCollection 2024.
3
Regulatory Mechanisms Governing the Autophagy-Initiating VPS34 Complex and Its inhibitors.
Biomol Ther (Seoul). 2024 Nov 1;32(6):723-735. doi: 10.4062/biomolther.2024.094. Epub 2024 Oct 7.
5
Neuronal Autophagy: Regulations and Implications in Health and Disease.
Cells. 2024 Jan 4;13(1):103. doi: 10.3390/cells13010103.
6
AI-based AlphaFold2 significantly expands the structural space of the autophagy pathway.
Autophagy. 2023 Dec;19(12):3201-3220. doi: 10.1080/15548627.2023.2238578. Epub 2023 Jul 30.
7
The Atg1 complex, Atg9, and Vac8 recruit PI3K complex I to the pre-autophagosomal structure.
J Cell Biol. 2023 Aug 7;222(8). doi: 10.1083/jcb.202210017. Epub 2023 Jul 12.
8
Mitophagy in atherosclerosis: from mechanism to therapy.
Front Immunol. 2023 May 16;14:1165507. doi: 10.3389/fimmu.2023.1165507. eCollection 2023.
9
Role of Macroautophagy in Mammalian Male Reproductive Physiology.
Cells. 2023 May 5;12(9):1322. doi: 10.3390/cells12091322.
10
Structural basis for ATG9A recruitment to the ULK1 complex in mitophagy initiation.
Sci Adv. 2023 Feb 15;9(7):eadg2997. doi: 10.1126/sciadv.adg2997.

本文引用的文献

1
A Structural View of Xenophagy, a Battle between Host and Microbes.
Mol Cells. 2018 Jan 31;41(1):27-34. doi: 10.14348/molcells.2018.2274. Epub 2018 Jan 23.
3
A novel conformation of the LC3-interacting region motif revealed by the structure of a complex between LC3B and RavZ.
Biochem Biophys Res Commun. 2017 Aug 26;490(3):1093-1099. doi: 10.1016/j.bbrc.2017.06.173. Epub 2017 Jun 29.
4
Mechanisms of Autophagy Initiation.
Annu Rev Biochem. 2017 Jun 20;86:225-244. doi: 10.1146/annurev-biochem-061516-044820. Epub 2017 Mar 15.
5
The molecular mechanism of Atg13 function in autophagy induction: What is hidden behind the data?
Autophagy. 2017 Mar 4;13(3):449-451. doi: 10.1080/15548627.2016.1277312. Epub 2017 Jan 24.
6
The 1:2 complex between RavZ and LC3 reveals a mechanism for deconjugation of LC3 on the phagophore membrane.
Autophagy. 2017 Jan 2;13(1):70-81. doi: 10.1080/15548627.2016.1243199. Epub 2016 Oct 28.
7
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
8
Mechanistic insights into selective autophagy pathways: lessons from yeast.
Nat Rev Mol Cell Biol. 2016 Sep;17(9):537-52. doi: 10.1038/nrm.2016.74. Epub 2016 Jul 6.
9
Regulation of Autophagy By Signaling Through the Atg1/ULK1 Complex.
J Mol Biol. 2016 May 8;428(9 Pt A):1725-41. doi: 10.1016/j.jmb.2016.03.030. Epub 2016 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验