School of Pharmacy, Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia.
University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
Antimicrob Agents Chemother. 2018 Sep 24;62(10). doi: 10.1128/AAC.01306-18. Print 2018 Oct.
The combination product meropenem-vaborbactam, with activity against KPC-producing carbapenem-resistant , is likely to be used during renal replacement therapy. The aim of this work was to describe the extracorporeal removal (adsorption and clearance) of meropenem-vaborbactam during continuous venovenous hemofiltration (CVVH). An model was used to examine the effects of a matrix of operational settings. Vaborbactam did not adsorb to AN69 (acrylonitrile and sodium methallylsulfonate copolymer) ST100 (surface area, 1 m) hemofilter; the mean (±standard deviation [SD]) meropenem adsorption was 9% (±1%). The sieving coefficients (mean ± SD) with AN69 ST100 and ST150 (surface area, 1.5 m) filters ranged from 0.97 ± 0.16 to 1.14 ± 0.12 and from 1.13 ± 0.01 to 1.53 ± 0.28, respectively, for meropenem and from 0.64 ± 0.39 to 0.90 ± 0.14 and 0.78 ± 0.18 to 1.04 ± 0.28, respectively, for vaborbactam. At identical settings, vaborbactam sieving coefficients were 25% to 30% lower than for meropenem. Points of dilution, blood flow rates, or effluent flow rates did not affect sieving coefficients for either drug. However, doubling the effluent flow rate resulted in >50 to 100% increases in filter clearance for both drugs. Postfilter dilution resulted in 40 to 80% increases in filter clearance at a high effluent flow rate (4,000 ml/h), compared with ∼15% increases at a low effluent flow rate (1,000 ml/h) for both drugs. For all combinations of setting and filters tested, vaborbactam clearance was lower than that of meropenem by ∼20 to 40%. Overall, meropenem-vaborbactam is efficiently cleared in CVVH mode.
美罗培南-沃博巴坦组合产品对产 KPC 碳青霉烯耐药菌具有活性,可能在肾脏替代治疗期间使用。本研究的目的是描述连续静脉-静脉血液滤过(CVVH)期间美罗培南-沃博巴坦的体外清除(吸附和清除)。使用模型研究了操作设置矩阵的影响。沃博巴坦不会吸附到 AN69(丙烯腈和甲基丙烯磺酸钠共聚物)ST100(表面积 1 m)血液滤器;美罗培南的平均(±标准差 [SD])吸附率为 9%(±1%)。AN69 ST100 和 ST150(表面积 1.5 m)过滤器的美罗培南和沃博巴坦的筛分系数(平均值±SD)分别为 0.97±0.16 至 1.14±0.12 和 1.13±0.01 至 1.53±0.28,0.64±0.39 至 0.90±0.14 和 0.78±0.18 至 1.04±0.28。在相同的设置下,沃博巴坦的筛分系数比美罗培南低 25%至 30%。稀释点、血流速度或流出液流速均不影响两种药物的筛分系数。然而,将流出液流速增加一倍会导致两种药物的过滤器清除率增加 50%至 100%。在高流出液流速(4000 ml/h)时,后过滤稀释会导致过滤器清除率增加 40%至 80%,而在低流出液流速(1000 ml/h)时,两种药物的清除率仅增加 15%左右。对于所有测试的设置和过滤器组合,沃博巴坦的清除率比美罗培南高约 20%至 40%。总体而言,美罗培南-沃博巴坦在 CVVH 模式下被有效清除。