Suppr超能文献

大肠杆菌和枯草芽孢杆菌对首选和非首选碳源的瞬时分解能力。

Capacity for instantaneous catabolism of preferred and non-preferred carbon sources in Escherichia coli and Bacillus subtilis.

机构信息

Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.

Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland.

出版信息

Sci Rep. 2018 Aug 6;8(1):11760. doi: 10.1038/s41598-018-30266-3.

Abstract

Making the right choice for nutrient consumption in an ever-changing environment is a key factor for evolutionary success of bacteria. Here we investigate the regulatory mechanisms that enable dynamic adaptation between non-preferred and preferred carbon sources for the model Gram-negative and -positive species Escherichia coli and Bacillus subtilis, respectively. We focus on the ability for instantaneous catabolism of a gluconeogenic carbon source upon growth on a glycolytic carbon source and vice versa. By following isotopic tracer dynamics on a 1-2 minute scale, we show that flux reversal from the preferred glucose to non-preferred pyruvate as the sole carbon source is primarily transcriptionally regulated. In the opposite direction, however, E. coli can reverse its flux instantaneously by means of allosteric regulation, whereas in B. subtilis this flux reversal is transcriptionally regulated. Upon removal of transcriptional regulation, B. subtilis assumes the ability of instantaneous glucose catabolism. Using an approach that combines quantitative metabolomics and kinetic modelling, we then identify the additionally necessary key metabolite-enzyme interactions that implement the instantaneous flux reversal in the transcriptionally deregulated B. subtilis, and validate the most relevant allosteric interactions.

摘要

在不断变化的环境中做出正确的营养选择是细菌进化成功的关键因素。在这里,我们研究了使模型革兰氏阴性和阳性物种大肠杆菌和枯草芽孢杆菌分别在非首选和首选碳源之间进行动态适应的调节机制。我们专注于在生长于糖酵解碳源上时能够即时分解生糖碳源,反之亦然的能力。通过在 1-2 分钟的时间尺度上跟踪同位素示踪剂的动态,我们表明,从首选葡萄糖到唯一碳源丙酮酸的通量逆转主要是转录调控的。然而,在相反的方向上,大肠杆菌可以通过别构调节瞬时逆转其通量,而枯草芽孢杆菌则是转录调控的。去除转录调控后,枯草芽孢杆菌可以立即进行葡萄糖代谢。通过结合定量代谢组学和动力学建模的方法,我们确定了实现转录失调控枯草芽孢杆菌中瞬时通量逆转所必需的关键代谢物-酶相互作用,并验证了最相关的别构相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ff/6079084/76bd193a6809/41598_2018_30266_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验