Suppr超能文献

一个经实验支持的枯草芽孢杆菌全局转录调控网络模型。

An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network.

作者信息

Arrieta-Ortiz Mario L, Hafemeister Christoph, Bate Ashley Rose, Chu Timothy, Greenfield Alex, Shuster Bentley, Barry Samantha N, Gallitto Matthew, Liu Brian, Kacmarczyk Thadeous, Santoriello Francis, Chen Jie, Rodrigues Christopher D A, Sato Tsutomu, Rudner David Z, Driks Adam, Bonneau Richard, Eichenberger Patrick

机构信息

Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.

Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.

出版信息

Mol Syst Biol. 2015 Nov 17;11(11):839. doi: 10.15252/msb.20156236.

Abstract

Organisms from all domains of life use gene regulation networks to control cell growth, identity, function, and responses to environmental challenges. Although accurate global regulatory models would provide critical evolutionary and functional insights, they remain incomplete, even for the best studied organisms. Efforts to build comprehensive networks are confounded by challenges including network scale, degree of connectivity, complexity of organism-environment interactions, and difficulty of estimating the activity of regulatory factors. Taking advantage of the large number of known regulatory interactions in Bacillus subtilis and two transcriptomics datasets (including one with 38 separate experiments collected specifically for this study), we use a new combination of network component analysis and model selection to simultaneously estimate transcription factor activities and learn a substantially expanded transcriptional regulatory network for this bacterium. In total, we predict 2,258 novel regulatory interactions and recall 74% of the previously known interactions. We obtained experimental support for 391 (out of 635 evaluated) novel regulatory edges (62% accuracy), thus significantly increasing our understanding of various cell processes, such as spore formation.

摘要

来自生命所有领域的生物体都利用基因调控网络来控制细胞生长、特性、功能以及对环境挑战的反应。尽管准确的全局调控模型能提供关键的进化和功能见解,但即便对于研究最深入的生物体,这些模型仍不完整。构建综合网络的努力受到诸多挑战的困扰,包括网络规模、连接程度、生物体与环境相互作用的复杂性,以及估计调控因子活性的难度。利用枯草芽孢杆菌中大量已知的调控相互作用以及两个转录组学数据集(包括一个专门为此研究收集的包含38个独立实验的数据集),我们使用网络组件分析和模型选择的新组合,同时估计转录因子活性,并为这种细菌构建一个大幅扩展的转录调控网络。我们总共预测了2258个新的调控相互作用,并找回了74%的先前已知相互作用。我们为635个评估的新调控边中的391个获得了实验支持(准确率62%),从而显著增进了我们对各种细胞过程(如孢子形成)的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15fe/4670728/02122fc35fac/MSB-11-839-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验