Suppr超能文献

锥体-杆体同源盒 CRX 控制哺乳动物视网膜光感受器的突触前活性区形成。

Cone-rod homeobox CRX controls presynaptic active zone formation in photoreceptors of mammalian retina.

机构信息

Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Hum Mol Genet. 2018 Oct 15;27(20):3555-3567. doi: 10.1093/hmg/ddy272.

Abstract

In the mammalian retina, rod and cone photoreceptors transmit the visual information to bipolar neurons through highly specialized ribbon synapses. We have limited understanding of regulatory pathways that guide morphogenesis and organization of photoreceptor presynaptic architecture in the developing retina. While neural retina leucine zipper (NRL) transcription factor determines rod cell fate and function, cone-rod homeobox (CRX) controls the expression of both rod- and cone-specific genes and is critical for terminal differentiation of photoreceptors. A comprehensive immunohistochemical evaluation of Crx-/- (null), CrxRip/+ and CrxRip/Rip (models of dominant congenital blindness) mouse retinas revealed abnormal photoreceptor synapses, with atypical ribbon shape, number and length. Integrated analysis of retinal transcriptomes of Crx-mutants with CRX- and NRL-ChIP-Seq data identified a subset of differentially expressed CRX target genes that encode presynaptic proteins associated with the cytomatrix active zone (CAZ) and synaptic vesicles. Immunohistochemistry of Crx-mutant retina validated aberrant expression of REEP6, PSD95, MPP4, UNC119, UNC13, RGS7 and RGS11, with some reduction in Ribeye and no significant change in immunostaining of RIMS1, RIMS2, Bassoon and Pikachurin. Our studies demonstrate that CRX controls the establishment of CAZ and anchoring of ribbons, but not the formation of ribbon itself, in photoreceptor presynaptic terminals.

摘要

在哺乳动物的视网膜中,视杆细胞和视锥细胞通过高度特化的带状突触将视觉信息传递给双极神经元。我们对指导发育中视网膜中光感受器前突触结构的形态发生和组织的调节途径知之甚少。虽然神经视网膜亮氨酸拉链(NRL)转录因子决定了视杆细胞的命运和功能,但 cone-rod homeobox(CRX)控制着 rod- 和 cone-特异性基因的表达,对于光感受器的终末分化至关重要。对 Crx-/-(null)、CrxRip/+ 和 CrxRip/Rip(显性先天性失明模型)小鼠视网膜的全面免疫组织化学评估显示,异常的光感受器突触具有非典型的带状形状、数量和长度。Crx 突变体的视网膜转录组与 CRX 和 NRL-ChIP-Seq 数据的综合分析确定了一组差异表达的 CRX 靶基因,这些基因编码与细胞基质活性区(CAZ)和突触小泡相关的突触前蛋白。Crx 突变体视网膜的免疫组织化学验证了 REEP6、PSD95、MPP4、UNC119、UNC13、RGS7 和 RGS11 的异常表达,其中 Ribeye 减少,而 RIMS1、RIMS2、Bassoon 和 Pikachurin 的免疫染色没有明显变化。我们的研究表明,CRX 控制 CAZ 的建立和带状物的锚定,但不控制光感受器前突触末端中带状物本身的形成。

相似文献

1
Cone-rod homeobox CRX controls presynaptic active zone formation in photoreceptors of mammalian retina.
Hum Mol Genet. 2018 Oct 15;27(20):3555-3567. doi: 10.1093/hmg/ddy272.
2
OTX2 loss causes rod differentiation defect in CRX-associated congenital blindness.
J Clin Invest. 2014 Feb;124(2):631-43. doi: 10.1172/JCI72722. Epub 2014 Jan 2.
3
Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis.
PLoS Genet. 2012;8(4):e1002649. doi: 10.1371/journal.pgen.1002649. Epub 2012 Apr 12.
4
CrxRdy Cat: A Large Animal Model for CRX-Associated Leber Congenital Amaurosis.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(8):3780-92. doi: 10.1167/iovs.16-19444.

引用本文的文献

1
Clinical Applications of the Cone Contrast Test in Ophthalmology and Neurology.
J Clin Med. 2025 Apr 29;14(9):3079. doi: 10.3390/jcm14093079.
2
Cone Rod Homeobox (): literature review and new insights.
Ophthalmic Genet. 2025 Mar 12:1-9. doi: 10.1080/13816810.2025.2458086.
9
Temporal and Isoform-Specific Expression of Is Evolutionarily Conserved Between the Developing Chick and Human Retina.
Front Mol Neurosci. 2022 Jan 13;14:773356. doi: 10.3389/fnmol.2021.773356. eCollection 2021.
10
Allele-specific gene editing to rescue dominant CRX-associated LCA7 phenotypes in a retinal organoid model.
Stem Cell Reports. 2021 Nov 9;16(11):2690-2702. doi: 10.1016/j.stemcr.2021.09.007. Epub 2021 Oct 14.

本文引用的文献

1
Neuronal cell-type classification: challenges, opportunities and the path forward.
Nat Rev Neurosci. 2017 Sep;18(9):530-546. doi: 10.1038/nrn.2017.85. Epub 2017 Aug 3.
2
Evolution of the Human Nervous System Function, Structure, and Development.
Cell. 2017 Jul 13;170(2):226-247. doi: 10.1016/j.cell.2017.06.036.
3
Ribbon Synapses and Visual Processing in the Retina.
Annu Rev Vis Sci. 2015 Nov 24;1:235-262. doi: 10.1146/annurev-vision-082114-035709.
6
Timing temporal transitions during brain development.
Curr Opin Neurobiol. 2017 Feb;42:84-92. doi: 10.1016/j.conb.2016.11.010. Epub 2016 Dec 13.
7
Ensembl 2017.
Nucleic Acids Res. 2017 Jan 4;45(D1):D635-D642. doi: 10.1093/nar/gkw1104. Epub 2016 Nov 28.
8
NRL-Regulated Transcriptome Dynamics of Developing Rod Photoreceptors.
Cell Rep. 2016 Nov 22;17(9):2460-2473. doi: 10.1016/j.celrep.2016.10.074.
9
Genomic control of neuronal demographics in the retina.
Prog Retin Eye Res. 2016 Nov;55:246-259. doi: 10.1016/j.preteyeres.2016.07.003. Epub 2016 Aug 1.
10
A comprehensive transcriptional map of primate brain development.
Nature. 2016 Jul 21;535(7612):367-75. doi: 10.1038/nature18637. Epub 2016 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验